[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
131(2): 2017/06/23(金)00:54 ID:Wf0Q2EbY(1/2)調 AAS
>>125
>>130の補足
> だから「後者」がなくなることを示さなければ可算無限になることは言えないですよ
> 可算無限というのは自然数全体の集合Nの濃度だというのは分かりますよね?
https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0
> 自然数はすべて順序数である。
> 自然数全体の集合 ω は (略) 順序数である。
> すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω
> 後続順序数と極限順序数
> ある順序数 β が存在して α = S(β) となる順序数 α を後続順序数(successor ordinal)と呼ぶ。
> 0 でも後続順序数でもない順序数を極限順序数(limit ordinal)と呼ぶ。
> ω は最小の極限順序数である。
「後者」がωとなるような(順序数としての)自然数は存在しない
135(9): 現代数学の系譜 古典ガロア理論を読む 2017/06/23(金)06:39 ID:GDLxUv2f(1/21)調 AAS
>>130-131
どうも。スレ主です。
難しく考えすぎでは?
私の主張は
「時枝記事で、任意の自然数n∈N(自然数の集合)に対し、決定番号がnとなる同値類が構成できる。
従って、決定番号の集合をKとして、集合Kの濃度は可算無限。」と単純です
(略証)
1.>>93より引用
”「全部の項が0の無限数列」と
「n番目までの項が1で、その後の全部の項が0の無限数列」は 同値”
↓
これを変形して、n>1で
「全部の項が0の無限数列」と
「n-1番目までの項が1で、その後の全部の項が0の無限数列」は 同値”とします
2.ここで、仮に代表元は「最初から全部の項が0の無限数列」とします(>>98)
そうすると、「n-1番目までの項が1で、その後の全部の項が0の無限数列」と代表元との比較で、決定番号はnです。
3.nとして、任意の自然数を取ることができます。QED
これで終りです。
追記
1.上記は略証ですが、添え字付きの文字*)を使った証明にできることには、同意頂けるとして略証としました。
注*)時枝>>12の「s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^N」のような書き方ですが、書くのも大変ですし、読む方も大変です。上記略証でご勘弁を。
2.任意の自然数nについて、>>88 現代数学における自然数の構成にならって、nの後者n+1、その後者n+1+1、その後者n+1+1+1、・・・と無限に続けることができます
そうすると、任意の自然数nについても、必ず可算無限の後者が存在しますよ。くどいですが、ここ良いですね
3.”超限順序数 ω”とかを持ち出されていますが、現代数学の確率論のテキストでは、”超限順序数 ω”は不要と思います。
”超限順序数 ω”を使わずに、可算無限と連続無限を扱っています。
例えば、>>57で紹介した 6章 確率分布 http://www.heisei-u.ac.jp/ba/fukui/pdf/stattext06.pdf などを見て下さい
もし、確率論で、”超限順序数 ω”を使った確率論のテキストがあれば教えて下さい。
なお、Sergiu Hart氏 PDF>>28、 mathoverflow >>23 とも、”超限順序数 ω”は登場していません
181(1): 2017/06/24(土)15:21 ID:KI1Jch5w(1/3)調 AAS
>>170
> なお、元の時枝記事に勝手に要素を加え、”上記のことは数当て戦略に必要です”と仰っても
> 問題にないこと(特に確率論の標準的テキストにも無いこと)を付け加えたら、問題の改作ではないですか?
> ”超限順序数 ω”を使わずに、可算無限と連続無限を扱っています。
可算無限と連続無限について書いてある大抵の初歩的な集合論のテキストやweb上に公開されている講義資料等には
順序数の説明があるはずです
実際に検索してみると
http://fuchino.ddo.jp/papers/axiomatic-set-th-unabridged.pdf
がヒットして
2chスレ:math
2chスレ:math
でスレ主自身が引用しているpdfファイルです
p.1の下には「2 順序数,基数」とありp.2の下段には
> すべての自然数は順序数で,(∈ に関して) すべての自然数より大きな最小の順序数 (最小の無限順序数) が N になる.
> ただし, N を順序数と見るときには,これを ω と表わすことが多い.
> 順序数には,自然数がそうであるように,α + 1 = α ∪ {α} という形をしていて, (∈ による順序に関して)
> その直前の順序数 (ここでの α) を持つものがある一方,ω のように,そのような順序数の存在しないものもある.
> 後者の順序数を極限順序数とよぶ.
とあり>>131の内容と同じことが書いてある
箱の総数は可算無限個であるから順序数を考える必要がある(可算無限濃度は自然数ではないので)
決定番号は自然数である
すると有限の時は1ずつ同じ増え方をするが箱の数を可算無限個にするところで可算無限個ずれる
箱の総数: 1, 2, 3, ... , D-2, D-1, ω (= N)
決定番号: 1, 2, 3, ... , D-2, D-1, D
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.043s