[過去ログ]
現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net http://rio2016.5ch.net/test/read.cgi/math/1497848835/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
548: 132人目の素数さん [sage] 2017/07/08(土) 12:26:22.50 ID:WrLlowvw >>541 おっちゃんバカなので、 母集団だの偏差値の算出方法だのは全く分からず、そういう話にはついていけん。 予備校講師や塾講師の方がそういう話には詳しいだろうよ。 http://rio2016.5ch.net/test/read.cgi/math/1497848835/548
550: 現代数学の系譜 古典ガロア理論を読む [sage] 2017/07/08(土) 14:23:06.81 ID:yPoPkF9y >>547-549 おっちゃん、どうも、スレ主です。 レスありがとう >>n人の人がカラオケバトルしたとします >トップは平均何回入れ替わるでしょう? >とは、「入れ替わる回数の平均を求める問題」で、 >そのような問題と解釈していいんだろ? >それなら、私の考え方で答えは「1−1/n」になり、当たっているじゃないか。 前提が全く違う話です。 なので、この話は後で。 >母集団だの偏差値の算出方法だのは全く分からず、そういう話にはついていけん。 了解。じゃ、>>542-543の第2の論点の方はどう? 「可算無限長の数列で、ある同値類の集合に対して、そこから任意の元を取り出したとき、有限の値mになる確率は0だ ∵有限の値mに対し、かならずm+1の決定番号を持つ数列が、xR倍存在するから(議論の詳細は上記の通り)」>>542 ということだが。詳しくは、>>542を見て下さい(^^ http://rio2016.5ch.net/test/read.cgi/math/1497848835/550
551: 現代数学の系譜 古典ガロア理論を読む [sage] 2017/07/08(土) 14:54:58.73 ID:yPoPkF9y >>547-549 追加レス おっちゃん、どうも、スレ主です。 >>n人の人がカラオケバトルしたとします >トップは平均何回入れ替わるでしょう? >とは、「入れ替わる回数の平均を求める問題」で、 >そのような問題と解釈していいんだろ? >それなら、私の考え方で答えは「1−1/n」になり、当たっているじゃないか。 第1の論点>>541は、前提が全く違う話です。 ちょっと説明すると、n人の人がカラオケバトルで、これを名人大会にしたいので、カラオケをする人の母集団の大きさをM人として トップ1000人から選んで、カラオケバトルをやりたいと。 1<n<<1000 (nは1000よりかなり小さい)としておきましょう。 M人から、ランダムにn人選んだとき、n人がすべて、カラオケ名人トップ1000人に入っている確率は、かなり小さいだろうと これは、Mの大きさに依存することは、明白だろう Mが、ある町の数千人として、そこからn人選んだなら、かなりの人がトップ1000人に入っているだろう だが、ある地方都市の数万人から選んだら・・、大都市の数十万人から、関東全域の数百万人から選んだら・・、全国の数千万人から、全世界の数億万人から選んだら・・、と Mが大きくなると、ランダムにn人選んだとき、n人がすべて、カラオケ名人トップ1000人に入っている確率は、どんどん小さくなる このアナロジーで、決定番号の母集団と決定番号の関係を考えて貰えればありがたいね 「カラオケをやる人のランキング vs 同値類に属する数列s'の決定番号d'」 ってことなんだ もちろん、n人選んだ中でカラオケバトルをして、1〜n番の順位を付けるのは、選んだ後の話で、それはそれで良いと思うよ 纏めると、上記で、1000を有限値dmaxとして、M→∞を考えたのが、>>540-541の第1の論点だ http://rio2016.5ch.net/test/read.cgi/math/1497848835/551
554: 132人目の素数さん [sage] 2017/07/08(土) 16:21:17.38 ID:chfUL8X2 >>547-549 >「入れ替わる回数の平均を求める問題」 何が入れ替わるんだい?トップでしょ >>424は何言ってるのかわからん おっちゃんは論理に基づく思考ができない「論痴」かな? 2回目で入れ替わる確率は1でなく1/2 3回目で入れ替わる確率も1でなく1/3 ・・・ だからn回目までやって、入れ変わる回数の 平均値は、各回の確率を足し合わせた 1/2+1/3+・・・+1/n http://rio2016.5ch.net/test/read.cgi/math/1497848835/554
581: 現代数学の系譜 古典ガロア理論を読む [sage] 2017/07/09(日) 08:28:24.31 ID:P/6T2Xvy >>574 補足 おっちゃん、どうも、スレ主です。 補足しておくよ >母集団だの偏差値の算出方法だのは全く分からず、そういう話にはついていけん。 >>548 分かったよ。確率計算のところは、抜きにして良い(^^ なので>>542 の第2の論点たのむ。下記引用しておく ”>>528の”s=(s_1, s_2, s_3 ,…,s_m,s_m+1,s_m+2,…),s'=(s'_1, s'_2, s'_3 ,…,s_m,s_m+1,s_m+2,…)∈R^N は非可算個ある。”に戻ろう 数列sが代表、数列s'たちが、同値類だ。>>523の設定のように、数列s'に対する決定番号はmとして良いだろう 上記の成績の例で言えば、数列s'たちが生徒で、決定番号mが試験の得点に例えられよう 決定番号m=4としよう。いっちするしっぽを無視すると、s'=(s'_1, s'_2, s'_3 )と書ける。 s'_1, s'_2, s'_3たちは、s'_3 not= s_3(∵s'_3 = s_3 の場合決定番号が3になる)の任意の実数の組み、つまり、R^3。 決定番号m=5としよう。s'=(s'_1, s'_2, s'_3, s'_4 )|s'_4 not= s_4 だから、R^4。つまり、R^3xR とみることができる。 ここで、決定番号m=1,2,3,4,5を合わせた集合の中から、一つ数列を選ぶ。 これを、s'=(s'_1, s'_2, s'_3, s'_4 )と書いても一般性を失わない。 但し、s'_4 = s_4 も許容することとする。 だれが考えても、作為なしにs'を選ぶなら、決定番号m=4となる確率は1だ ∵決定番号m<=3となる場合は、s'_4 = s_4 の1点に限られ、それ以外の任意の実数rに対して、決定番号m=4となるのだから そして、これが、決定番号m=5,決定番号m=6,・・・と繰り返され、mに上限がないということを思い出そう もう言いたいことが、お分かりだろう 可算無限長の数列で、ある同値類の集合に対して、そこから任意の元を取り出したとき、有限の値mになる確率は0だ ∵有限の値mに対し、かならずm+1の決定番号を持つ数列が、xR倍存在するから(議論の詳細は上記の通り)” (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1497848835/581
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s