[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
208
(1): 2017/06/25(日)08:42 ID:mZNqpxtD(1/5)調 AAS
>>64
2017/06/20(火) 19:09:59.17ID:aC5YHjKq
箱の列の長さの上限値をL(>1)として
記号数p(={0,1,・・・,p-1})
P(k)で、決定番号がkになる確率とすると
P(L) (p-1)/p
P(L-1) (p-1)/p^2
P(L-2) (p-1)/p^3
・・・
P(2)  (p-1)/p^(L-1)
P(1)  1/p^(L-1)

>>178
2017/06/24(土) 08:55:22.58ID:iGeIkE/m
有限列モデルでは
最後の箱以外の箱の中身を全て0とした
0…00
0…01
・・・
0…0(p-1)
のp個の列を同値類の代表元にとれます
その際、選択公理は不必要です
---

有限モデルで、決定番号が最大値Lをとるのは
「末尾の箱が同じ記号で、
 その直前の箱が代表元と異なる記号の列」
です

つまり有限モデルでは同値類は
末尾の箱の記号でのみ分けることができます
そしてその前の箱の中身はなんでもよいのだから
0・・・0としてもよいことになります
210
(1): 2017/06/25(日)09:03 ID:mZNqpxtD(2/5)調 AAS
>>85
2017/06/21(水) 18:56:08.96ID:17miKOtA
L→∞を考えたら間違いますよ
なぜなら、P(∞)=1だと考えようにも
∞番目の最後の箱はないからです

>>178
2017/06/24(土) 08:55:22.58ID:iGeIkE/m
もし列長L→∞とした”極限モデル”を考えると
最後の箱がないから、箱の中身を全て0とした
0・・・
の1個だけが代表元となってしまいます
その際、選択公理は不必要です(驚!)
---

>>1の極限モデルでは
・・・
P(n) (p-1)/p(∞-(n-1))→0
・・・
P(2)  (p-1)/p^(∞-1)→0
P(1)  1/p^(∞-1)→0
となる。

しかも有限番目の箱から先の箱が一致する
「稀な場合」を除くとみな決定番号が∞になる
P(∞)  1

しかし上記はそもそも「箱入り無数目」のモデルを
「有限列モデル」の極限として考えようとした誤りから
出たものである
つまり、極限モデルは列の同値関係が保存されない

同値関係の定義から、同値類と代表元から決まる決定番号は、
必ず自然数の値をとらざるを得ない
ゆえに、同値類の数は末尾の箱の記号の数pでは決まらず
非可算無限個にならざるを得ない
211
(1): 2017/06/25(日)09:21 ID:mZNqpxtD(3/5)調 AAS
>>135(=>>1)
>私の主張は
>「時枝記事で、任意の自然数n∈N(自然数の集合)に対し、
> 決定番号がnとなる同値類が構成できる。
> 従って、決定番号の集合をKとして、集合Kの濃度は可算無限。」

列の同値関係は、「決定番号が同じ」ではありませんよ
あくまで「ある箱から先の中身が全部一致すること」です

そして、上記の「ある箱」の位置を示すのが決定番号です
代表元というのも所詮同値類の中の1個でしかなく
同値類の中の他の元との決定番号は当然まちまちです
214: 2017/06/25(日)09:43 ID:mZNqpxtD(4/5)調 AAS
>>212-213

>>1に捧げる曲
https://www.youtube.com/watch?v=wXSCoKqy8MI
215: 2017/06/25(日)18:03 ID:mZNqpxtD(5/5)調 AAS
>>1からの放送

https://www.youtube.com/watch?v=LSD9sOMkfOo
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s