[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
177
(3): 2017/06/24(土)08:55 ID:iGeIkE/m(1/3)調 AAS
>>169
理解できない?それはいけませんね
具体的に例示しながら説明いたしましょう
(なお、簡単のため箱の中身の記号の数は有限個(p個)とします)

>>1氏の有限列モデルでは
最後の箱以外の箱の中身を全て0とした
0…00
0…01
・・・
0…0(p-1)
のp個の列を同値類の代表元にとれます
その際、選択公理は不必要です

そして、もし列長L→∞とした”極限モデル”を考えると
最後の箱がないから、箱の中身を全て0とした
0・・・
の1個だけが代表元となってしまいます
その際、選択公理は不必要です(驚!)

その場合
「ある箱から先の箱が全部0」となる列
以外は決定番号が∞となりますね

し・か・し、これ、実は箱入り無数目の「同値類」の設定に反します
なぜなら、「どの箱から先の箱にも0でないものがある」列
(つまり、>>1氏の「極限モデル」で決定番号∞になる列)
は実は、代表元である筈の「箱の中身が全部0」の列と同値でないからです
同値になるのは、あくまである箱から先の箱が全部0となる列だけです

ということで「箱入り無数目」のモデルでは
>>1氏の「極限モデル」で決定番号∞となる列にも
それぞれ代表元を割り当てる必要があります
そしてその同値類は1つではなく実は非可算無限個あるので
代表元の選択に「非可算選択公理」が必要になります

ここまで書けば「箱入り無数目」モデルは
>>1氏の「極限モデル」とは全く異なることが
>>1氏にも分かると思いますが如何ですか?
Y or N
191: 2017/06/24(土)17:00 ID:iGeIkE/m(2/3)調 AAS
>>188
>都合の悪い質問は、いつもスルーですね。

時間を有効に使うため割愛させていただきました

さて、
>意味が分かりません。
ではご説明します

>時枝問題では、代表元はただ一つです。
ええ、1つの同値類に対して1つです。

有限列モデルでは同値類はp個でその代表元としてそれぞれ
0…00
0…01
・・・
0…0(p-1)
がとれる、という意味です

実際、>>1氏はそういう考えで確率を算出してますからね
分からない筈がないんですが・・・
195
(1): 2017/06/24(土)17:09 ID:iGeIkE/m(3/3)調 AAS
>>190
>L→∞自体を考えることができないと言っているのではなく、
>L→∞を考えても意味がないと言っているんだよ

ええ、正確に言えば
「「箱入り無数目」のモデルは、L→∞の「極限モデル」とは異なる」
ということです

極限で保存される性質と保存されない性質があります
例えば「列の最後の箱がある」という性質は極限では成立しません

>>1氏の考察は全て「列の最後の箱がある」という前提によります
列の最後の箱がなくなれば、成立し得ないということです

「箱入り無数目」のモデルでは、如何なる列においても
決定番号以降の箱が存在します
つまり、>>1氏が苦労して算出した「予測可能な箱が存在する確率」
の数字は全く意味を持たなくなります

読者のほとんどは、この単純な事実を理解してます
理解してないのは、私が見る限り、
>>1氏と「おっちゃん」という人くらいでしょう
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s