[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
274(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:01 ID:INb7Gqhx(1/26)調 AAS
>>266 >>268 >>270 >>272
¥さん、どうも。スレ主です。
お元気そうでなによりです。
回答にあたって、測度論と確率空間をあらためて、勉強していました・・(^^
まあ、いままで、勉強が上滑りだったと、あらためて思っています・・(^^
つづく
275(2): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:02 ID:INb7Gqhx(2/26)調 AAS
>>274 つづき
そこで
>>235の補足資料下記追加(このスレの余白は十分ありますので(^^)
>Lebesgue 積分論のp.21 >>203
> http://www.ma.noda.tus.A^c.jp/u/sh/pdfdvi/ana1.pdf
これ、下記やね
http://wiki.ma.noda.tus.A^c.jp/pk/ma/
東京理科大 数学科
http://www.ma.noda.tus.A^c.jp/u/sh/
S.HIRABA's Study Room 平場 誠示 [平場研究室] Mathematics and Probability [数学と確率]
http://www.tus.ac.jp/ridai/doc/ji/RIJIA01Detail.php?act=&kin=ken&diu=33b8
平場 誠示 教授 東京理科大学 理工学部 数学科
1993-1999 大阪市立大学理学部助手
1999-2000 大阪市立大学理学部講師
2000-2003 東京理科大学理工学部講師
2003-2007 東京理科大学理工学部助教授
2007- 東京理科大学理工学部准教授
つづく
276(5): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:03 ID:INb7Gqhx(3/26)調 AAS
>>275 つづき
http://www.ma.noda.tus.A^c.jp/u/sh/
講義ノート 平場 誠示
http://www.ma.noda.tus.A^c.jp/u/sh/pdfdvi/ana1.pdf
(上記>>203Lebesgue 積分論に同じ)解析学 1 (3年通年)37p ルベーグ積分論 ana1.pdf 419kb ('16/12/01)
(抜粋)
1.1 測度とは何か?
高校までに1 点の長さは0 として, 区間[0, 1] の長さは1 として習って来たであろう.
では次の計算はどこがおかしいのだろうか?(ここでは長さを| ・ | を用いて表す.)
1 = |[0, 1]| = Σ {x∈[0,1]} |{x}| = 0.
区間[a, b] (a < b) の長さをb ? a と定義するのは問題ないであろう.
では1 点の長さを0 とするのがまずいのであろうか?
しかしこれを正とすると, 場所に寄って長さが変わるというのは考えにくいので, 全て同じ値として, それを無限にたすと無限大になり, 1 = ∞ となってしまう.
それに|{x}| ? |[x, x + 1/n]| = 1/n → 0 (n → ∞) から|{x}| = 0 とするのも妥当であろう.
答えは, 実は, 上の足し算がまずいのである.
我々に許される足し算は有限和の極限としての無限和, 即ち, 可算までなのである.
無限和=可算無限和=有限和の極限.
では長さの測れ
る集合(可測集合) とはどのようなものであろうか?それがLebesgue 可測集合と呼ばれるもので,
測度とはこのように測れる集合や許される演算などを明確にし, 長さというものをより厳密にし,
さらに一般化したものを表すのである.
大事なことは, 全ての演算が可算無限までしか許されないということである.
つづく
277(6): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:03 ID:INb7Gqhx(4/26)調 AAS
>>276 つづき
2 可測集合と測度(Measurable sets and Measures)
以下では, X を集合として, その全部分集合族を2^X で表す.
2.1 σ-加法族
定義2.1 X の部分集合族F, i.e., F ⊂ 2^X が
(1) Φ ∈ F
(2) A ∈ F =⇒ A^c ∈ F
(3) A1,A2, ・ ・ ・ ∈ F =⇒∪{n=1〜∞}An ∈ F
をみたすときσ-加法族(σ-additive class) またはσ-集合体(σ-field) という.
問2.2 次の集合族A は集合体であるがσ-集合体ではないことを示せ.
(1) X が無限集合のとき{A ⊂ X : A かA^c が有限集合(Φ も含む)}
(2) X = R,-∞ ? a ? b ? ∞ に対し, (a, b] の形の区間の有限和で表される集合
∪{k=1〜n} (ak, bk]
全体, 但しb = ∞ なら(a,∞), a = b ならΦ とみなす.
2.3 測度空間
R~ = R∪{±∞} として, +∞ = ∞ と表し, 便宜上, 次のように定める: a ∈ R (有限値) に対して
a ±∞ = ±∞, a ×∞ = ∞ (a > 0),= -∞ (a < 0), 0 ×∞ = ∞× 0 = 0, a/∞ = 0.
∞ を-∞ に変えても同様である. また∞-∞ や∞/∞ などは定義しない(できない).
注意 ここで注意して欲しいのは∞=∞ = ∞× 1=∞ = ∞× 0 = 0 などという計算をしてはいけない!
ということである. 上の無限大はあくまで, 有限な値からの極限として考えるべきものである.
つづく
278(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:04 ID:INb7Gqhx(5/26)調 AAS
>>277 つづき
http://www.ma.noda.tus.A^c.jp/u/sh/pdfdvi/16ProbRw.pdf
数理統計学 2 (3年後期)確率論の基礎とランダムウォーク 平場 誠示 2016年度
(抜粋)
1 確率論の基礎(Basics of Proability Theory)
1.1 確率空間と確率変数(Probability SpA^cees and Random Variables
確率論においては, 必ず, ある適当な確率空間(Ω,F, P) があり, その上で定義された, ある確率変数X
を対象として, その色々な性質について調べて行こうとする.
ここで(Ω,F, P) が確率空間(probability spA^ce) とは
? Ω はある集合(元をω ∈ Ω で表す)
? F (⊂ 2^Ω) はΩ 上のσ 集合体(σ-field); (2^Ω はΩ の全部分集合族)
(i) Ω ∈ F
(ii) A ∈ F ⇒ A^c ∈ F
(iii) An ∈ F (n = 1, 2, . . .) ⇒ ∪An ∈ F
確率空間においては, A ∈ F を事象(event) と呼ぶ.
? P = P(ω) は可測空間(Ω,F) 上の確率測度(probability measure), i.e., 全測度1 の測度;
P : F → [0, 1] は集合関数で次をみたす.
(i) P(Ω) = 1
(ii) An ∈ F (n = 1, 2, . . .) が互いに素⇒ P(∪An) =ΣP(An) (σ 加法性)
つづく
279(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:06 ID:INb7Gqhx(6/26)調 AAS
>>278 文字化け訂正
>>277 つづき
http://www.ma.noda.tus.A^c.jp/u/sh/pdfdvi/16ProbRw.pdf
数理統計学 2 (3年後期)確率論の基礎とランダムウォーク 平場 誠示 2016年度
(抜粋)
1 確率論の基礎(Basics of Proability Theory)
1.1 確率空間と確率変数(Probability SpA^cees and Random Variables
確率論においては, 必ず, ある適当な確率空間(Ω,F, P) があり, その上で定義された, ある確率変数X
を対象として, その色々な性質について調べて行こうとする.
ここで(Ω,F, P) が確率空間(probability spA^ce) とは
・ Ω はある集合(元をω ∈ Ω で表す)
・ F (⊂ 2^Ω) はΩ 上のσ 集合体(σ-field); (2^Ω はΩ の全部分集合族)
(i) Ω ∈ F
(ii) A ∈ F ⇒ A^c ∈ F
(iii) An ∈ F (n = 1, 2, . . .) ⇒ ∪An ∈ F
確率空間においては, A ∈ F を事象(event) と呼ぶ.
・ P = P(ω) は可測空間(Ω,F) 上の確率測度(probability measure), i.e., 全測度1 の測度;
P : F → [0, 1] は集合関数で次をみたす.
(i) P(Ω) = 1
(ii) An ∈ F (n = 1, 2, . . .) が互いに素⇒ P(∪An) =ΣP(An) (σ 加法性)
つづく
280: 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:07 ID:INb7Gqhx(7/26)調 AAS
sage
281(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:07 ID:INb7Gqhx(8/26)調 AAS
>>279 つづき
https://ja.wikipedia.org/wiki/%E9%9B%86%E5%90%88%E4%BD%93
集合体
・field of sets: 集合が集合演算について成す体状の数学的構造。有限加法族を参照。
https://ja.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E5%8A%A0%E6%B3%95%E6%97%8F
有限加法族
定義
空でない集合 S 上の部分集合族 M ⊂ 2S が和 ∪ と補集合をとる集合演算 c について閉じていて、和 ∪ に関する中立元 ? を持つとき、M を有限加法族または単に加法族と呼ぶ。
A1, A2 ∈ M ⇒ A1 ∪ A2 ∈ M,
A ∈ M ⇒ Ac ∈ M,
? ∈ M.
また、M ⊂ 2S が積 ∩ と対称差 Δ について閉じていて、積 ∩ に関する中立元 S を含むとき、M を集合体と呼ぶ。
A1, A2 ∈ M ⇒ A1 ∩ A2 ∈ M,
A1, A2 ∈ M ⇒ A1 Δ A2 ∈ M,
S ∈ M.
有限加法族の条件は加法的な一つの演算 ∪ に関する構造に注目していて、集合体のほうは積 ∩ と対称差 Δ の二つの演算がつくる集合環の構造に注目しての命名であるが、この二つの定義の条件は互いに同値であり、これらはまったく同じ概念を定める。また、これら(が含む集合環の)の条件から帰納的に
・A_{1},A_{2},・・・ ,A_{n}∈ M → ∪{k=1〜n}A_{i}∈ M
・A_{1},A_{2},・・・ ,A_{n}∈ M → ∩{k=1〜n}A_{i}∈ M
など、有限回の集合演算に関して閉じていることが示せる。
つづく
282(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:08 ID:INb7Gqhx(9/26)調 AAS
>>281 つづき
付加構造を持つ集合体
完全加法族と可測空間
ある集合 X 上の有限加法族 F は、それが可算和・可算交に関して閉じているとき、完全加法族と呼ばれる。このとき、集合体 (X, F) は可測空間と呼ばれ、可測空間の複体は可測集合と呼ばれる。
測度空間とは、三つ組 (X, F, μ) であって、μ が可測空間 (X, F) 上の測度であることをいう。μ が確率測度であるときには、測度空間を確率空間、その底にある可測空間を標本空間と呼ぶ。
標本空間の点は標本と呼ばれ、可能性のある結果を表していると同時に、可測集合(複体)は事象と呼ばれ、確率を割り当てることによって結果の性質を表現していると考えられる(標本空間と言う用語は単に可測空間の底集合の意味で用いられることも多い。
任意の部分集合が事象である場合にはなおさらである)。 測度空間や確率空間はそれぞれ測度論や確率論において基本的な役割を果たす。
つづく
283(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:09 ID:INb7Gqhx(10/26)調 AAS
>>282 つづき
https://ja.wikipedia.org/wiki/%E5%AE%8C%E5%85%A8%E5%8A%A0%E6%B3%95%E6%97%8F
完全加法族
数学における完全加法族(かんぜんかほうぞく、英: completely additive class [of sets])、可算加法族(かさんかほうぞく、英: countably additive class [of sets])あるいは (σ-)加法族、σ-集合代数(シグマしゅうごうだいすう、英: σ-algebra [of subsets over a set])、σ-集合体(シグマしゅうごうたい、英: σ-field [of sets])[注 1]は、
主な用途として測度を定義することに十分な特定の性質を満たす集合の集まりである。特に測度が定義される集合全体を集めた集合族は完全加法族になる。
この概念は、解析学ではルベーグ積分に対する基礎付けとして重要であり、また確率論では確率の定義できる事象全体の成す族として解釈される。完全加法族を接頭辞「完全」を付けずに単に「加法族」と呼ぶことも多い(つまり、有限加法族の意味ならば接頭辞「有限」を省略しないのがふつう)ので注意が必要である[1]。
集合 X 上の完全加法族の定義は「集合 X の部分集合からなる族 Σ であって、可算回の合併、交叉と補演算という集合演算について閉じていて、合併についても交叉についても単位元を持つようなもの」である。
集合 X 上の σ-集合代数の定義は「X の部分集合の空でない族 Σ で、X 自身を含み、補集合を取る操作(補演算)および可算な合併に関して閉じているもの」である。
即ちこれは、有限加法族あるいは集合代数であって[注 2]、かつその演算を可算無限回まで含めて順序完備(英語版)化したものになっている。集合 X とその上の完全加法族 Σ との対 (X, Σ) は可測空間と呼ばれる集合体になる。
例えば X = {a, b, c, d} とすると、X 上の完全加法族となる集合族の一つは
Σ = {??, {a, b}, {c, d}, {a, b, c, d}?}
で与えられる。
より有用な例は、実数直線の部分集合族で、全ての開区間から始めて、それらの可算合併・可算交叉・補演算を取ることをそれらの演算がすべて閉じるようになるまで繰り返して(つまり、開区間を全て含む最小の完全加法族)得られる完全加法族である。得られた完全加法族はボレル σ-集合代数と呼ばれる(ボレル集合の項を参照)。
つづく
284(2): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:09 ID:INb7Gqhx(11/26)調 AAS
>>283 つづき
https://www.math.kyoto-u.ac.jp/~hino/index_j.html
日野正訓のホームページ 京都大学 大学院理学研究科 数学教室
https://www.math.kyoto-u.ac.jp/~hino/jugyou.html
2017年度授業関係資料等(日野正訓)
https://www.math.kyoto-u.ac.jp/~hino/jugyoufile/AnalysisI170418.pdf
解析学I(2016年度前期)日野正訓 京大 20170622版
(抜粋)
0.4 記号の約束など
集合R ∪ {±∞} をR~ で表す*)18.+1をしばしば単に1とかく.R での演算等を以下のように
定める.(以下,複号同順)
実数に関する演算は通常通り.
a ∈ R に対して,-∞ < a < +∞
a ∈ R に対して,
? a + (±∞) = ±∞, ±∞+ a = ±∞
? a > 0 のとき,a x (±∞) = ±∞, ±∞x a = ±∞
? a < 0 のとき,a x (±∞) = ?∞, ±∞x a = ? ∞
注*)18 R の位相については,x ∈ R の基本近傍系はR でのそれと同じで,
+∞ の基本近傍系を{a,+∞] | a ∈ R},
-∞の基本近傍系を{-∞, a] | a ∈ R} と定める.一般位相について不得意な人は
「実数列が正(負)の無限大に発散するときR においては+∞,-∞ に収束すると解釈する」と理解しておけば間違いはない.
つづく
285(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:10 ID:INb7Gqhx(12/26)調 AAS
>>284 文字化けあるが、原文ご参照ください
286(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:11 ID:INb7Gqhx(13/26)調 AAS
>>285 つづき
1.2 幾つかの例
測度の例を幾つか挙げる.大抵の非自明な測度は,情報のすべてを明示的に書き下すことは期待
できず,普通は5 節で論じる構成定理を通じて,存在を保証したり間接的に情報を得るのみである
ことに注意する.以下の例のうち最初の3 つは,すべての可測集合の測度を具体的に与えていると
いう意味で大変単純なものである.
1.2.1 数え上げ測度
(X, M) を任意の可測空間とする.A 2 Mに対して,μ(A) を集合A の元の個数(∈ N∪{0,+∞})
と定めると,μ は(X, M) 上の測度となる.μ を数え上げ測度(counting measure) という.
1.2.2 可算集合上の測度
X を高々可算集合,M = 2^X とし,φ をX 上の[0,+1]-値関数とする.A ∈ Mに対し,
μ(A) =Σx∈A φ(x) と定めると,μ は(X, M) 上の測度である.
・ 問. 高々可算集合X とM= 2^X に対して,(X, M) 上の測度はこのようなものに限られることを示せ.
1.2.3 Dirac 測度
略
1.2.4 1 次元Lebesgue 測度
X = R とし,F= {(a, b], -∞ <= a <= b <= +∞の形の集合の有限和の全体} とおく.
・ 問. Fは有限加法族であることを示せ.
略
注意. 上記で,半開区間(a, b] を基準に測度を構成するのは一見不自然に見えるかもしれない.
閉区間の有限和全体は有限加法族にならず,閉区間をすべて含むような有限加法族
はFを含むので(確認せよ),結局最初からFを考えた方が話が早い.「空間R を分割する」とい
う見地に立てば,区間の端点の片方のみ含む集合(半開区間)を基礎とすることは自然であると考
えることもできる.右端点を含んでいるというのは全く便宜上のことであり,代わりに[a, b) の形
の半開区間を用いても構わない.
数学的には対等なのでどちらを選択しても本質的な違
いはないが,(a, b] の方を用いるのが多数派のようである.
つづく
287(2): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:17 ID:INb7Gqhx(14/26)調 AAS
>>286 つづき
さて、上記を踏まえて、本題
>>244-245
>改めてあなたが>>141で考えた確率空間について以下の質問に答えてください。
>>276 まず、平場先生
「我々に許される足し算は有限和の極限としての無限和, 即ち, 可算までなのである.
無限和=可算無限和=有限和の極限.」(σ-集合体)
を押さえておきましょう。
そして、この視点から見ると
1)箱が1つ、箱に任意の実数 r ∈ (0,1] が入り、箱を開けずに数を的中する確率は? 当然、直感的には0であるし、非加算無限分の1だ。が、σ-集合体(可算)をベースとする確率空間は、構築できない。
2)箱が1つ、箱に任意の有理数 q ∈ (0,1] が入り、箱を開けずに数を的中する確率は? 当然、直感的には0であるし、加算無限分の1だ。が、σ-集合体をベースとする確率空間は、構築できない。
(ここは、>>277 の平場先生 「 問2.2 次の集合族A は集合体であるがσ-集合体ではないことを示せ.(1) X が無限集合のとき{A ⊂ X : A かA^c が有限集合(Φ も含む)}」から、”σ-集合体ではない”が言える思う。・・が、実はよく理解できなかった(証明は下記OKWAVEにあるようだ。ご参照 )(^^ )
https://okwave.jp/qa/q5924861.html aiaiai21 OKWAVE 2010-05-27
Q.σ-集合体について
(1)Ωは無限集合であるとする。
A={A⊂Ω:AまたはA^cが有限集合か空集合}
この集合族Aは集合体であるがσ-集合体ではないことを示せ。
略
質問者が選んだベストアンサー muturajcp 2010-05-31
略
つづく
288(7): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:18 ID:INb7Gqhx(15/26)調 AAS
>>287 つづき
そこで
問1:
P(K)=0, P(Ω)=1となるΩの定義を式で書いてください。
(2chに書きたくないなら別のところでも構いません。きちんと式で書いてください。)
※ここでK⊂2^Ω, K={k∈N | 1≦k<∞}である。
すなわちΩは自然数全体を含むことに注意せよ。
問2:
Kが加法族Fの元でP(K)=0ならば、Kの補集合K~もまたFの元でありP(K~)=1である。
このことに注意して、確率が1となる事象K~を明記してください。
※事象K~⊂Ωにどのような元が含まれるのか?
ここを曖昧にせぬよう、事象K~をきちんと式で書いてください。
答え(A1&2).
Ωについて:>>231にならって、決定番号dは、1 <= d < ∞、代表の数列rによる同値類の集合をT, Tの元r, としよう。
r,s ∈ T
Δ(s,r)= s-r から s = Δ(s,r)+ r と表現できて、s = Δ(s,r)+ r ∈T
rは、各元で共通だから、結局、Δ(s,r)を考えれば良い
この視点で考えると、同値類の集合Tから、任意の元sを取り出すと、Δ(s,r)が決まり、決定番号dは、「dから先が全て0になる最大の番号」として定まる
つまり、s→d という対応で、一つのdに対して複数のsが対応する。よって、dの確率を考えるときは、そのベースの同値類の集合をTを考えるべし
だから、Ω=Tでしょ。
f:s→d という関数を考える。f(s)=d
で、繰り返すが、r ∈ T なら、f(r)=1
f(s)=d なら
Δ(s,r)= (b1,b2,b3 ,・・・,bd-1)となる。ここで、定義から、bd-1 not=0であることにご注意(0とすると、決定番号dが変わる)
なお
Δ(s,r)= (b1,b2,b3 ,・・・,bd-1,0,0,0,・・・・)と書いても同じ意味。”,0,0,0,・・・・”を書く手間を省いただけ
で
箱に”任意の実数”を入れる場合、Ω=Tとして、これは明らかに非加算集合で、事象Fとして箱の数は数直線の1点だから、σ-集合体にはならない!
よって、測度論的確率空間は、存在しない!
以前の零集合の議論は、おそらく、零集合までは間違っていないが、その後測度論的確率を論じることはできないので、そこの部分は撤回します。
追伸
あと、Sergiu Hart氏>>28 PDFのGAME2が、σ-集合体になるかどうかだが・・
289: 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:28 ID:INb7Gqhx(16/26)調 AAS
>>246
Q
">ええ、同意ですよ (=「決定番号が自然数である確率は当然1です」)
つまり ∞∈N であると?
決定番号=∞ があなたの持論ですよね?"
A
正確には下記
決定番号=∞
↓(下記に変更ください)
私の主張は
「時枝記事で、任意の自然数n∈N(自然数の集合)に対し、決定番号がnとなる同値類の数列が構成できる。
従って、”決定番号の重なる部分を纏めた集合”をKとして(注*)、集合Kの濃度は可算無限。」と単純です >>135 (注**)
注*) 箱には、任意の実数を入れるとすると、各決定番号dで、 2<= d の場合、dとなる数列は、非加算無限通り存在することを注意しておく
補足
注**) 詳しく書くと、K={1,2,・・,k,・・}だと。
自然数の集合N={1,2,・・,n,・・}として
K ⊂ Nは自明。一方で、任意の自然数 ∀n∈Nで、n∈Kとできる。(略証は>>135ご参照)
よって、N ⊂ K
∴ K=N
290: 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:29 ID:INb7Gqhx(17/26)調 AAS
>>247
上記>>288ご参照
291: 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:31 ID:INb7Gqhx(18/26)調 AAS
>>248
Q
"長々と書いてるけど要は
「決定番号の確率分布が書き表せられない」
といいたいのかな?
そんなこと、今頃気づいたの?"
A
実は、類似のことを、1年ほど前に書いています。下記例など。複数回。
(参考例)
スレ18 2chスレ:math
155 自分:現代数学の系譜11 ガロア理論を読む[] 投稿日:2016/02/13(土) 08:11:22.87 ID:1yqxSAX/
(抜粋)
>>132 このモデルの場合、1列のパラメータ:列の長さL(箱の数)=∞、箱に入る数の集合の濃度=10
3.一つの同値類の集合には、無限の要素が含まれる。そして、決定番号は、ある極端な分布を持つ。決して一様分布ではない。決定番号が大きいほど存在する確率大
>>133 少数第n位の有限小数qは、場合の数としておよそ10^n通りある(正確には、少数第n位がゼロの場合は除かれるので、少し減る)。だから、位数nが大きいほど多くの有限小数がその同値類に属している。
(引用終り)
292(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:32 ID:INb7Gqhx(19/26)調 AAS
>>249
>上記の関数をつかって代表元を選べると認めたならば
>決定番号がいかほど巨大であろうが決まるのだから
>その次の箱を選べばいいだけのこと 何の問題もない
「何の問題もない」と思い込ませるところが、このパズル( mathoverflow では、”riddle”)のキモだろう
問題は、Probabilitiesに関することだから、確率計算に乗らないとまずいのだ。下記ご参照
スレ34 2chスレ:math
(抜粋)
下記英 mathoverflowは参考になる。要するに、時枝記事類似”Riddle”で、Alexander Pruss氏は、2013年に
”But we have no reason to think the event of guessing correctly ・・..で、非可測経由だとまずいと言っている。これ如何に?
http://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice
Probabilities in a riddle involving axiom of choice - MathOverflow: edited Dec 9 '13 Denis
(抜粋)
answered Dec 11 '13 at 21:07 Alexander Pruss
The probabilistic reasoning depends on a conglomerability assumption, namely that given a fixed sequence u→, the probability of guessing correctly is (n-1)/n, then for a randomly selected sequence, the probability of guessing correctly is (n-1)/n.
But we have no reason to think the event of guessing correctly is measurable with respect to the probability measure induced by the random choice of sequence and index i, and we have no reason to think that the conglomerability assumption is appropriate.
(引用終り)
293: 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:33 ID:INb7Gqhx(20/26)調 AAS
>>250
どうも。スレ主です。
>2chスレ:math
>でわざわざ図で示してるが・・・
ご苦労さまです。図示の主は貴方ですか? 下記ご参考 「実数の構成に関するノート 原 隆」など、昨年紹介済みですよ(コテハン入っていませんがこれ私です)
2chスレ:math
687 自分返信:132人目の素数さん[] 投稿日:2016/09/18(日) 07:05:24.54 ID:9cd3XTDs
(抜粋)
http://www2.math.kyushu-u.A^c.jp/~hara/lectures/07/realnumbers.pdf
実数の構成に関するノート 原 隆 (九州大学数理学研究院)Juy 10, 2007
http://m-A^c.jp/me/index_j.phtml 図説「数学教育」更新: 2016-03-10 http://m-A^c.jp/index_j.phtml m's A^cademe
http://m-A^c.jp/me/subjects/nq/real_num/construction/cauchy/index_j.phtml
コーシー (Cauchy) 列による実数の定義 数学教育 : 実数:
(引用終り)
>「確率1でdmax99<dとなるから、予測は失敗する」
>という主張も、測度論では正当化できない
正確には通常の測度論的確率論には乗らないということですね。成功失敗とも
但し、列長さL有限モデルから出発して、L→∞を考えることは可能ですよ (これは数学ではごく普通の手法ですよ)
もちろん、”有限モデルの極限が妥当かどうか?”の検証は、別の角度からする必要はありますが
294: 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:39 ID:INb7Gqhx(21/26)調 AAS
>>275 直接関係ないが、検索でヒットした面白そうな資料追加
http://www.ma.noda.tus.A^c.jp/u/sh/pdfdvi/anaSP3.pdf
解析学特論3 (4年前期)29p Lebesgue 積分の応用 (旧 解析学2) 平場 誠示 ('16/06/28)
下記、追加資料(確率論) 阪井章先生、前半の確率の歴史がなかなか面白い
(関数環と近似問題(「数学」の論文)は、中身はムズくて読めなかった。(^^)
http://isw3.naist.jp/home-ja.html
奈良先端科学技術大学院大学
http://isw3.naist.jp/IS/Curriculum/05/outline/05-introduction_to_mathematical_science_ii.html
数理科学概論U Introduction to Mathematical Science U 阪井 章 2005
http://isw3.naist.jp/IS/Curriculum/05/outline/05-introduction_to_mathematical_science_ii/probability.pdf
追加資料(確率論) 阪井章 奈良先端科学技術大学院 2006
(抜粋)
例1.2 任意の集合- と- の部分集合の全部の集合F を考える.- の1点!0 とm > 0
に対して,
ωo ∈ A → μ(A) = m, ωo not∈ A → μ(A) = 0
と定義すると,{Ω,F, μ} は測度空間である.この測度を質量m の点質量point mass
という.とくに,m = 1 のときは,ディラック測度Dirac measure という.
https://www.jstage.jst.go.jp/article/sugaku1947/28/1/28_1_25/_article/-char/ja/
https://www.jstage.jst.go.jp/article/sugaku1947/28/1/28_1_25/_pdf
関数環と近似問題 阪井 章(阪大) 「数学」 Vol. 28 (1976) No. 1 P 25-34 (なお、不思議にこれの引用文献ページが抜けているようだ)
295(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:49 ID:INb7Gqhx(22/26)調 AAS
>>273
哀れな素人さん、どうも。スレ主です。
>極限値の意味さえ分っていない薄馬鹿の巣だ(笑
私も含めて、極限は、”別の意味”で、ご指摘の通りですから(^^
耳が痛いです(^^
>スレ主もその一人で、こんな簡単なことさえ分っていないから、
>議論に参加せず、コピペで話題を逸らし逃げてばかりいる(笑
まあ、ご指摘の点は、ほぼ当たっているが
1)小利口に結論を先取りして悪いが・・、お互いわかり合えないだろうと。
2)また、哀れな素人さんとは、育ってきた数学の環境が違いすぎて、使う用語が異なるので、おそらく会話にならないだろうと
3)なお”コピペ”は、大事だと思っています。先人の研究や議論をしっかり踏まえること。理系の議論は、これなくしては始まりません。勿論、100年に一人の天才は別として。私ら鈍才は、”コピペ”必須です(^^
まあ、ゆっくり議論していってください
296: 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)21:57 ID:INb7Gqhx(23/26)調 AAS
>>288 訂正
Ωについて:>>231にならって、決定番号dは、1 <= d < ∞、代表の数列rによる同値類の集合をT, Tの元r, としよう。
↓
Ωについて:>>231にならって、決定番号dは、1 <= d < ∞、代表の数列rによる同値類の集合をT, Tの元s, としよう。
297: 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)22:04 ID:INb7Gqhx(24/26)調 AAS
平仄を合わせておくのだった
集合の元sなら集合はS
集合をTとするなら、集合の元はtなど
まあ、前の記述が数列sだったし・・
集合Sは、引用したテキストなどで、使われていたので、
用法を変則にしたら、てきめんに間違ってしまった(^^
298: 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)22:53 ID:INb7Gqhx(25/26)調 AAS
>>295 補足
>>極限値の意味さえ分っていない薄馬鹿の巣だ(笑
>私も含めて、極限は、”別の意味”で、ご指摘の通りですから(^^
"極限"について、下記を強調しておきます(^^
>>277 平場 誠示先生 "2.3 測度空間" 解析学 1 (3年通年)37p ルベーグ積分論 ana1.pdf 419kb ('16/12/01) より
「∞ を-∞ に変えても同様である. また∞-∞ や∞/∞ などは定義しない(できない).
注意 ここで注意して欲しいのは∞=∞ = ∞× 1=∞ = ∞× 0 = 0 などという計算をしてはいけない!
ということである. 上の無限大はあくまで, 有限な値からの極限として考えるべきものである.」
299: 現代数学の系譜 古典ガロア理論を読む 2017/06/30(金)23:20 ID:INb7Gqhx(26/26)調 AAS
戻る
前スレ34 2chスレ:math
477 返信:132人目の素数さん[] 投稿日:2017/06/10(土) 19:11:22.64 ID:+LqdbZS3
(抜粋)
(2chスレ:math
/*
現代数学の系譜11 ガロア理論を読む2016/12/04(日) 10:56:48.84ID:gDf64zAj
>>62 つづき
で>>47だね
”俺は時枝問題の有理数バージョン、Hart氏のgame2を以下のように変更するのである:
『1個の有理数に対応する1列をplayer2が100列に並べ直すのではなく、
100列が独立同分布(ポアソン分布)でゲーム開始時に用意されているものとする』
このようにゲーム設定を変更しても、可算無限個の数字の1つを
的中させるという問題の不可思議さは変わらないことを、まず認めよ。”
1.結論から言えば、No! 的中できない。というか、箱には{0,1,...,9}なので、確率1/9だ
2.その”100列が独立同分布(ポアソン分布)”の意味が分からんが、おそらくNo!の結論には影響しないと思う
*
(引用終り)
(ポアソン分布)の意味、下記やったんやね。今頃分かったよ(^^
http://isw3.naist.jp/IS/Curriculum/05/outline/05-introduction_to_mathematical_science_ii/probability.pdf
追加資料(確率論) 阪井章 奈良先端科学技術大学院 2006
(抜粋)
P27 第4章ベルヌーイ列
独立な試行をN 回続けて行うことを,長さN のベルヌーイ列という.1回の試行
で,事象E が起こる確率をp とする.(起こらない確率はq = 1?p )長さN のベルヌーイ列で,E がr 回起こる確率を
b(r;N, r) (またはBN,p(r))
で表す.
Ω = {0, 1, 2, ..,N}
F = - の部分集合全部の集合
P(A) = Σr∈A b(r;N, p)
とおくと,(Ω,F, P) は確率空間である.
P29
4.4 ポアソン近似
比較的にn が大きく,p が小さく
λ= np
が適当な一定量である問題を扱う.
略
これはn が十分大きいときのb(k; n, λ/n) のポアソン分布p(k; λ) による近似である.
(引用終り)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.052s