[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
175(3): 現代数学の系譜 古典ガロア理論を読む 2017/06/24(土)08:38 ID:IFjkOwpb(1/5)調 AAS
>>173-174
どうも。スレ主です。
いやいや、私は不勉強なので、教えて頂こうと
きっと、すばらしい極限のテキストと、すばらしい順序数ωを使った確率論のテキストが、あるのでしょうね
あるいは、既存のテキストにないとすれば、すばらしい独創的な数学でしょうかね?
でも、もし、すばらしい独創的な数学だとしたら、私の頭ではとても理解できないと思います
すばらしい独創的な数学の場合なら
こんな場所に書かずに、どこか適当な場所で発表されることをお薦めします
184(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/24(土)16:34 ID:IFjkOwpb(2/5)調 AAS
>>183
おっちゃん、どうも、スレ主です。
>>すばらしい独創的な数学の場合なら
>>こんな場所に書かずに、どこか適当な場所で発表されることをお薦めします
>腐っても鯛とか是是非非ともいわれるではないか。
>素晴らしいモノはどこに書いても素晴らしく、悪いモノはどこに書いてもポンコツ。
お説ごもっともなれど
・素晴らしいモノなら、匿名さんでなく、きちんと名前を出して、正式に発表した方がいい
・悪いモノならば、それはゴミ
追伸
ところで、腰痛どうですか? ご自愛ください
185(1): 現代数学の系譜 古典ガロア理論を読む 2017/06/24(土)16:35 ID:IFjkOwpb(3/5)調 AAS
>>181-182
どうも。スレ主です。
検索ご苦労さまです。
ええ、ええ、数学基礎論や集合論のテキストに、順序数 ωの記述があるよと。
そうですよね。でも、それは、確率論のテキストではありませんね。
確率論の標準テキストでは、順序数 ωは使いません。
順序数 ωを使った確率論は、きっと素晴らしい独創だと思いますよ。
でも、いま、時枝問題に限ると、順序数 ωを使うことは、勝手に要素を加えて、強引に問題を解いてしまう危険性があります
ええ、ええ、順序数 ωを使って問題が解けるかもしれません。が、確率論の標準テキストから外れてしまうと、私にはその成否は判断不能です
どうぞ、その独創的な確率論は、別の場所で発表されるようお薦めします。
187(6): 現代数学の系譜 古典ガロア理論を読む 2017/06/24(土)16:38 ID:IFjkOwpb(4/5)調 AAS
>>178
どうも。スレ主です。
レスありがとう
>> この場合、L→∞の極限では、1<= L <∞ の決定番号は、零集合として存在しうる
>『よって決定番号が有限の値を取る確率は0である』
>そう言いたいんでしょ? Yes or No?
もちろん、Yesですが、力点は、”存在しうる”のところにあります。
補足1
・任意のn∈N(自然数)に対して、決定番号がnとなる数列が必ず構成できます
・ところが、任意のnに対して、決定番号がn+1(nの後者)となる数列も必ず構成できます
・そして、決定番号がn+1となる数列の方が、場合の数としては圧倒的に多い。nまでの場合の数の(p-1)倍です (>>141のAの4項ご参照)
・決定番号がn+2となる数列も同様に考えられて、n+1までの場合の数の(p-1)倍です。・・と無限につづきます
補足2
・上記補足1に示したように、決定番号の出現確率は、決定番号が大きくなるほど、大きくなります
・さて、下記URLの「さまざまな確率分布」を見て下さい
・正規分布や対数正規分布など、確率変数Xの区間が X < ∞の確率分布がありますが、必ず X → ∞で、その出現頻度は0に減衰します
・もし、 X → ∞で、その出現頻度は0に減衰しなければ、母数は∞になり、数学として取り扱うことは困難になります
・決定番号の出現確率は、上記のように、 X → ∞で、その出現頻度は0に減衰しません
(参考)
http://www.biwako.shiga-u.ac.jp/sensei/mnaka/ut/statdist.html
さまざまな確率分布 probability distributions - 数理的思考 - 中川雅央 【知と情報の科学】
(抜粋)
観測されたデータを説明する統計モデルに,どの確率分布を使えばうまく説明できるでしょうか.
正規分布や二項分布など,確率分布の種類は数多く,いろいろなカタチ(分布形)があります.確率分布の当てはめを考えるには,そのカタチ(分布形)を知ることが重要です.
2. 連続型確率分布 (Continuous probability distributions)
確率変数がある区間内の全ての実数を取り得る場合は「連続型」といいます.連続型のグラフは,横軸の確率変数が連続量なので,縦軸はその値での確率密度を表しており,区間内(横軸のある値とある値の間)を積分した面積がその確率に相当します.
188(8): 現代数学の系譜 古典ガロア理論を読む 2017/06/24(土)16:41 ID:IFjkOwpb(5/5)調 AAS
>>177
どうも。スレ主です。
>もし、よろしければ、”「上限値Lは存在しない、∞は上限値Lではない」から L→∞を考えることができない”に類似の記述のあるテキストを、ご教示頂けませんか? 希望はネットからアクセスできる文書が希望です。しかし、出版されている購買可能なテキストでも可です。
>もし、テキストの提示ができないなら、あなた独自説の極限理論と、解させて頂きます
都合の悪い質問は、いつもスルーですね。
覚えているうちにメモしておきます:”>>95 えーと、こちらの質問>>87は都合が悪いのでスルーですか? まあ、良いでしょう。また、後でやりましょう”
今回は、『”「上限値Lは存在しない、∞は上限値Lではない」から L→∞を考えることができない”に類似の記述のあるテキストは、提示できない』と解させて頂きます。
その上で附言すれば、極限を考えることは、普通は制約なく可能です ( 例えば、極限 https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90 )
但し、極限で、収束する場合ばかりではなく、発散や振動などもあります。
また、極限で、プラスから近づく場合と、マイナスから近づく場合とで、極限値が異なる場合なども、あります。
さて、>>177のお説のように、有限モデルを考えて、それを大きくして無限大の場合を考えることはよくあります
しかし、その場合、「有限モデルがいま考えている問題に適合しているのか」の検証は、常に求められます。その検証が甘いように思います。
以上を前振りとして、本題
Q
"最後の箱以外の箱の中身を全て0とした
0…00
0…01
・・・
0…0(p-1)
のp個の列を同値類の代表元にとれます"
A
意味が分かりません。時枝問題では、代表元はただ一つです。
有限モデルの前提が間違っていると思います。なので、あとはスルーでいいですね
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.031s