[過去ログ] 現代数学の系譜 古典ガロア理論を読む35 [無断転載禁止]©2ch.net (667レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
351
(1): 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)08:24 ID:8fQUKD9a(1/22)調 AAS
>>318-320
¥さん、どうも。スレ主です。
¥さんの話は、いつも深く含蓄があるね〜(^^

細かい話は後にして、確率論 コルモゴロフ "バシュリエ"でググると、先頭に
google Book 「ウォール街の物理学者」著者: ジェイムズ・オーウェン・ウェザーオール
が出てくる。

サミュエルソンの1955年のルイ・バシュリエの博士論文との出会いが記されているね
私は、"バシュリエ"のことは、全く知らなかったね。興味深いね〜(^^

数学屋でサミュエルソンを知らない人もいるだろうから、下記ご参照
20世紀後半に、サミュエルソンの経済学の本はバイブルとされた時期があった(第2回ノーベル経済学賞受賞(1970年))

https://ja.wikipedia.org/wiki/%E3%83%9D%E3%83%BC%E3%83%AB%E3%83%BB%E3%82%B5%E3%83%9F%E3%83%A5%E3%82%A8%E3%83%AB%E3%82%BD%E3%83%B3
ポール・サミュエルソン
ポール・アンソニー・サミュエルソン(Paul Anthony Samuelson、1915年5月15日 - 2009年12月13日)は、アメリカの経済学者。顕示選好の弱公理、ストルパー=サミュエルソンの定理、サミュエルソン=ヒックスの乗数・加速度モデル、バーグソン=サミュエルソン型社会厚生関数、新古典派総合などで知られる。第1回ジョン・ベイツ・クラーク賞受賞(1947年)、第2回ノーベル経済学賞受賞(1970年)[2]。

「博士論文(アンリ・ポアンカレに却下される)」は舌足らず(後述英版ご参照)
https://ja.wikipedia.org/wiki/%E3%83%AB%E3%82%A4%E3%83%BB%E3%83%90%E3%82%B7%E3%83%A5%E3%83%AA%E3%82%A8
ルイ・バシュリエ(Louis Jean-Baptiste Alphonse Bachelier、1870年3月11日 - 1946年4月28日)は、フランスの数学者。博士論文(アンリ・ポアンカレに却下される)において、確率論を用いて株価変動を議論した。
オプション(株式買取選択権)価格の評価について、確率論の使用を論議した。彼の説は、金融学の研究において、高度の数学を使用する最初の論文である。 そのため、バシュリエは、財政の数学および確率過程の研究の先駆者と考えられている。

つづく
352: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)08:26 ID:8fQUKD9a(2/22)調 AAS
>>351 つづき
バシュリエ英版
https://en.wikipedia.org/wiki/Louis_Bachelier
Louis Bachelier
(抜粋)
The thesis
Defended on March 29, 1900 at the University of Paris,[2] Bachelier's thesis was not well received because it attempted to apply mathematics to an unfamiliar area for mathematicians.[3]
However, his instructor, Henri Poincare, is recorded as having given some positive feedback (though socially insufficient for finding an immediate teaching position in France at that time). For example, Poincare called his approach to deriving Gauss' law of errors

“ very original, and all the more interesting in that Fourier's reasoning can be extended with a few changes to the theory of errors. ... It is regrettable that M. Bachelier did not develop this part of his thesis further. ”
The thesis received a grade of honorable, and was accepted for publication in the prestigious Annales Scientifiques de l’Ecole Normale Superieure. While it did not receive a mark of tres honorable, despite its ultimate importance, the grade assigned is still interpreted as an appreciation for his contribution.
 Jean-Michel Courtault et al. point out in "On the Centenary of Theorie de la speculation"
http://www.ifa.com/Media/Images/PDF%20files/Bachelier100years.pdf
that honorable was "the highest note which could be awarded for a thesis that was essentially outside mathematics and that had a number of arguments far from being rigorous." The positive feedback from Poincare can be attributed[by whom?] to his interest in mathematical ideas, not just rigorous proof.
(引用終り)
353
(2): 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)08:26 ID:8fQUKD9a(3/22)調 AAS
>>345
おっちゃん、どうも、スレ主です。

>濃度が有限の標本空間を構成して確率を求めるのが正しい。

一つ質問があるが、決定番号 d(i) に上限がないということを認めますか?(>>243 ご参照) Y or N
360: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)17:02 ID:8fQUKD9a(4/22)調 AAS
>>354-355 >>357
¥さん、どうも。スレ主です。
細かい点は、後にして(^^

>こういうのを勉強してて何時も思う事ですが、独創的な仕事の源流をたどれば殆ど常に
>『またフランス人か!』というのばっかしですわ。私は生まれた国を間違えたよね。

ヨーロッパ数学の中心は、仏と独と英でしょうね
その中でお国柄があるように思います。

独は独特の(ギャグか(^^)厳密性を追求する哲学があり
仏は発想が自由で独創の方にウェートがあり
英はニュートンに代表されるように、どちらかと言えば、実戦的というか目の前の問題を解く道具つくりに主眼があるような(ディラックのδ関数もそんな感じを受けます)

これに今は、大戦の戦勝国で、各国から英才を集めた米国が、台頭している
対して、日本は、なんでも、芸道(茶道、華道などなど)にならって、型にはめようとするところがありますね
独創や個性を伸ばそうとするよりもね。そこがちょっと問題かも(^^
361
(7): 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)17:17 ID:8fQUKD9a(5/22)調 AAS
>>356
おっちゃん、どうも、スレ主です。
レスありがとう

さらに質問
おっちゃん、解析や測度論に強そうだから、聞くが・・(^^

>>317より
"「1 点の長さは0」は数学の常識として、多くの場合に成り立つと思っています。
これを認めるなら、実数R∋r で、1点rをピンポイントで的中させることは、普通確率0(ゼロ)でしょうね。よほど、特殊な条件が無ければ。"は、同意しますか?

さらに、
1)例えば、別の例として、半開区間 (0,1] の任意の実数の点 0<r<=1 を的中させる確率は、0(ゼロ)だと。(普通に測度論より)
2)例えば、半開区間 (0,1] のn個の半開区間 に分割してたとして、 (0,1/n], (1/n,2/n],・・,((i-1)/n,i/n],・・,((n-1)/n,n/n(=1)] で、どの区間かを的中させる確率は、1/nだと。
3)2)でn→∞ とすれば、的中させる確率は、0(ゼロ)だと。

いかが?
363: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)17:21 ID:8fQUKD9a(6/22)調 AAS
>>361 訂正

2)例えば、半開区間 (0,1] のn個の半開区間 に分割してたとして、
 ↓
2)例えば、半開区間 (0,1] をn個の半開区間 に分割してたとして、
364: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)17:39 ID:8fQUKD9a(7/22)調 AAS
>>362
¥さん、どうも。スレ主です。

>★★★『(ものの考え方、ではなくて)遣り方の文化。だから「ナントカ道」という思想。』★★★
>だからコレじゃ勝ち目がないのは当たり前かと。私にしてみれば芳雄とか筑波とかさ。

まあ、だから、これから数学を本格的に学ぼうという人は、早く海外へ出た方が良いということかも
特に、一流と言われる先生のところに。そこに、先生以上に優秀な人(含む学生)が居たりして

小平先生のスペンサーとか
広中先生のマンフォードとか https://ja.wikipedia.org/wiki/%E3%83%87%E3%83%B4%E3%82%A3%E3%83%83%E3%83%89%E3%83%BB%E3%83%9E%E3%83%B3%E3%83%95%E3%82%A9%E3%83%BC%E3%83%89 1974年にフィールズ賞を受賞

古くは高木先生も、ヒルベルトのところへ留学した・・
佐藤幹夫先生も、年取ってからだが、プリンストンへ行ったし。あれ、きっと役に立っていると思う・・

わたしゃ、語学ができなかったから、留学は夢の又夢だったけど・・
371: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)18:39 ID:8fQUKD9a(8/22)調 AAS
>>366
¥さん、どうも。スレ主です。

>そういうのって「語学の問題じゃない」ですよ。英語で押し切っても普通は何とかなる
>でしょう。私はロシア語なんか出来ませんが、でもロシアでもいいから脱出したかった

まあ、人間は「語学など、窮地になるとなんとかする」潜在能力があるのかもしれません
江戸時代の日本人(下記)など
が、まあ背水の陣というか
でも、なかなかそれは凡人には難しいですよね(^^

https://ja.wikipedia.org/wiki/%E5%A4%A7%E9%BB%92%E5%B1%8B%E5%85%89%E5%A4%AA%E5%A4%AB
(抜粋)
大黒屋 光太夫(だいこくや こうだゆう、宝暦元年(1751年) - 文政11年4月15日(1828年5月28日))
天明2年(1782年)、嵐のため江戸へ向かう回船が漂流し、アリューシャン列島(当時はロシア領アラスカの一部)のアムチトカ島に漂着。
ロシア帝国の帝都サンクトペテルブルクで女帝エカチェリーナ2世に謁見して帰国を願い出、漂流から約9年半後の寛政4年(1792年)に根室港入りして帰国した。

彼らとともに暮らす中で光太夫らはロシア語を習得。

https://ja.wikipedia.org/wiki/%E9%AB%98%E6%A9%8B%E6%98%AF%E6%B8%85
高橋是清
(抜粋)
横浜のアメリカ人医師ヘボンの私塾であるヘボン塾(現・明治学院大学)にて学び、1867年(慶応3年)に藩命により、勝海舟の息子・小鹿と海外へ留学した。
ホームステイ先である彼の両親に騙され[3]年季奉公[4]の契約書にサインし、オークランドのブラウン家に売られる。
牧童や葡萄園で奴隷同然の生活を強いられ[注釈 1]、いくつかの家を転々とわたり、時には抵抗してストライキを試みるなど苦労を重ねる。この間、英語の会話と読み書き能力を習得する。
1868年(明治元年)、帰国する。帰国後の1873年(明治6年)、サンフランシスコで知遇を得た森有礼に薦められて文部省に入省し、十等出仕となる。
英語の教師もこなし、大学予備門で教える傍ら当時の進学予備校の数校で教壇に立ち、そのうち廃校寸前にあった共立学校(現・開成中学校・高等学校)の初代校長をも一時務めた。教え子には俳人の正岡子規やバルチック艦隊を撃滅した海軍中将・秋山真之がいる。
374: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)19:14 ID:8fQUKD9a(9/22)調 AAS
>>370
¥さん、どうも。スレ主です。

>小平先生の留学先はH.Weylで、広中さんの留学先はO.Zariskiですわ。

ああ、そうでしたよね
「小平先生の留学先はH.Weyl」というのは
「小平邦彦が拓いた数学」を買って読むと、そんなことが書いてありました(下記)(^^
この本を読むまでは、知らなかった
フィールズ賞を貰ったとか、調和解析だとか、秋月先生が書いていた記憶があったが・・(^^

https://www.iwanami.co.jp/book/b265484.html
https://www.iwanami.co.jp/files/tachiyomi/pdfs/0063160.pdf 立ち読みPDF
小平邦彦が拓いた数学 上野 健爾 著
(抜粋)
■著者からのメッセージ
今年,2015年は小平邦彦の生誕100年にあたる.小平邦彦は第二次世界大戦中に数学者として成長し,戦後,複素多様体論の研究者として世界をリードした.その過程は,20世紀の数学が一大発展を遂げた時期と軌を一つにする.
本書では小平邦彦がどのようにして複素多様体の研究へ導かれ,何をヒントにして研究を進めていったかを,小平の残した講演やエッセイをもとに小平の論文を読みながら考察していくことにする.(中略)
 小平の複素多様体論の研究は調和積分論がその基礎になっている.複素多様体の理論が進展して新しい局面にさしかかったときに,その理論の根底を支えたのは,常に,形を変えた調和積分論であった.
そして,数学の進展の常として,調和積分論に根ざしたそうした理論はほとんどの場合,最終的には調和積分論を必要としない新しい理論に取って代わられた.そうしたことから,今日,調和積分論を学ぶ機会はそれほど多くない.
しかしながら,小平邦彦の調和積分論がなかったならば複素多様体の理論の新しい進展は今よりはるかに遅れたものになっていたことは確かである.
 ヘルマン・ワイル(Hermann Weyl, 1885〜1955)の『リーマン面の概念』をヒントに始まった小平の調和積分論の研究が,複素多様体の理論の進展にどのように関わり,理論の進展を推し進めたかを知ることは,数学の研究に大きな示唆を投げかけるであろう.本書が数学の研究とは何かを知るヒントになることを希望する.
――本書「はじめに」より
377: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)19:32 ID:8fQUKD9a(10/22)調 AAS
>>372
>それはどうなんでしょうなあ。人に拠るとは思いますが。フランスに入国した時に私は
>一言も喋れませんでしたが、でもまあ最初の二年程度で「何とかなる」っていう状態に

¥さん、どうも。スレ主です。
それは大変でしたね。

夏目漱石など、留学で”神経衰弱”になったという(下記)
異境の地に耐えられるかどうかですが・・

まあ、夏目漱石と異なり、現代は飛行機や国際電話もありますから、漱石とは異境のレベルが違うかも
しかし、我々の友人でも留学や海外赴任した人を何人か知っていますが、みなその体験で成長していますね(^^

https://ja.wikipedia.org/wiki/%E5%A4%8F%E7%9B%AE%E6%BC%B1%E7%9F%B3
夏目漱石
(抜粋)
イギリス留学

1900年(明治33年)5月、文部省より英語教育法研究のため(英文学の研究ではない)英国留学を命じられる。

英文学研究への違和感がぶり返し、再び神経衰弱に陥り始める。

1901年(明治34年)、土井晩翠によれば下宿屋の女性主人が心配するほどの「驚くべき御様子、猛烈の神経衰弱」に陥り、1902年(明治35年)9月に芳賀矢一らが訪れた際に「早めて帰朝(帰国)させたい、多少気がはれるだろう、文部省の当局に話そうか」と話が出て、そのためか「漱石発狂」という噂が文部省内に流れる。
漱石は急遽帰国を命じられ、同年12月5日にロンドンを発つことになった。帰国時の船には、ドイツ留学を終えた精神科医・斎藤紀一がたまたま同乗しており[5]、精神科医の同乗を知った漱石の親族は、これを漱石が精神病を患っているためであろうと、いよいよ心配したという[6]。
380
(1): 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)19:46 ID:8fQUKD9a(11/22)調 AAS
>>376
¥さん、どうも。スレ主です。

>院生時代に中野さんの講義には出てましたが。

中野茂男さんかな?(下記)
昔は、中野茂男さんの本もよく書店で見かけましたが・・
いや、一冊も買わなかったのですが・・(^^

>小平先生は解析学と幾何学と代数学が交差する、数学の真の姿でしょうね。

先の本では、スペンサーが当時最新だった層理論の勉強をしようと誘われて、層理論を勉強したとありましたね(^^

http://study-guide.hatenablog.jp/entry/2015/12/24/%E5%B2%A1%E6%BD%94%E3%81%AE%E3%80%8C%E5%A4%9A%E5%A4%89%E6%95%B0%E8%A4%87%E7%B4%A0%E9%96%A2%E6%95%B0%E8%AB%96%E3%80%8D%E3%81%AE%E6%A6%82%E8%A6%81%E3%81%AB%EF%BC%8C%E7%8B%AC%E5%AD%A6%E3%81%A7%E5%85%A5
岡潔の「多変数複素関数論」の概要に,独学で入門するPDF資料まとめ。解析接続や正則性の概念を多様体上で一般化 勉強メモ (大学の講義動画や,資格試験の対策)
(抜粋)
・幾何学的関数論
中野茂男は秋月を経由して岡の講義を聞いたが,昭和35年より非コンパクトの見地から多変数に近づく。45年から49年にかけて,弱1完備複素多様体の消滅定理を得て,モノイダル変換の逆問題を解き,弱1完備の有効性を認識させた。…
382: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)19:54 ID:8fQUKD9a(12/22)調 AAS
>>380 訂正

スペンサーが当時最新だった層理論の勉強をしようと誘われて、
 ↓
スペンサーから当時最新だった層理論の勉強をしようと誘われて、

かな、日本語としては(^^
384: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)20:03 ID:8fQUKD9a(13/22)調 AAS
>>378
>その後の筑波時代の20年間も、猛烈に辛かったですがね。
>>381
>筑波でも「代数学っていう檻に閉じ込める」でしょう。まあ、これだけではないけど。
>まあ日本では、こういう考え方は何処でも普通の事柄なんでしょうがね。

まあ、一般にはそうでしょうね
で、日本の大学が、昔は、講座制でしたよね。教授が絶対君主でね(^^
(今は少し変わっているようですが・・)

あと、筑波ならその中での縄張りがあったりして(^^
で、「縄張り守れ」的な(^^

あと、絶対君主かそれに類する人のパワハラとかも・・
¥さんの場合も、パワハラでしょうかね? 単なる邪推ですが・・
ああ、辛いことを思い出させて悪いかも・・・
387: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)20:07 ID:8fQUKD9a(14/22)調 AAS
>>383
¥さん、どうも。スレ主です。

>でもSpencerからはテンソル解析とか、色々と教わったそうです。しかもこの変形理論は
>『先生がFields賞を受賞なさった「アトの話」』ですわ。でもこの仕事はかなり大きい
>と思いますが。だから何チャラ賞なんて関係ありませんわ。まさか芳雄じゃあるまいし。

ああ、そうなんですか? 小平先生のお仕事の全容は、とてもとても
まだまだ、端っこをちょっとかじっただけです
¥さん、詳しいね〜(^^
388: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)20:13 ID:8fQUKD9a(15/22)調 AAS
>>385
¥さん、どうも。スレ主です。

>そう言えば(大学入試の採点を逃げ回る)佐藤センセに対して『サトウにやらせろ〜』って
>叫んではりましたわ、あの中野教授。今となっては笑い話ですが。

「佐藤さんみたいな傍若無人というか厚顔無恥な人は『何処に居ても平気』な
んでしょうね。でもそれこそが佐藤さんの天才性でしょうね。私はその空気を傍で吸え
ただけでも幸せでしたが。」>>368やね(^^
392: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)20:49 ID:8fQUKD9a(16/22)調 AAS
>>389
>あの当時は『あんなのでも大学教授が勤まった』っていう幸運もあるだろうけどね。
>でもそのお陰で数理研が、そして日本全体が「凄い恩恵を受けた」んですよね。

¥さん、どうも。スレ主です。

細かいことは忘れてしまったが、佐藤先生のもとに優秀な弟子が集まって
佐藤先生の天才的独創性と、優秀な弟子の共同作業

その好循環
そういうサイクルが、うまく回ったという感じがしますね

優秀な弟子が、やる気を出して、どんどん前に進んでいくみたいな
それは、数学の能力だけではなく、人間力でもありますよね(^^
398: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)22:38 ID:8fQUKD9a(17/22)調 AAS
>>393
>その人間力という言い方は「都合のいい部分を何でもソコに押し込める」という言い方
>だから、従って『何も言ってないのと同じ』です。きちんと分析しないと何も判りませ
>んよ。

¥さん、どうも。スレ主です。
ああ、¥さんやっぱり、フランス系の思考ですね
私ら、どっぷり日本系だから・・・(^^
でも、これでも理屈っぽいと・・・(^^

>(例えばKolmogorovの時代に):
>★★★『数ある確率モデルの中からきちんと厳密化できる部分を切り出すのに成功した。』★★★
>のが、まあ云わば「あの公理系」ではないかと。

ああ、そうですね。1年ほど前から、¥さん、そう言われていましたね
ようやく、意味が分かってきました(^^

> 1.あの公理系では「本来は成り立ってはいけない主張」が成立する。
> 2.その一方で『扱えて欲しいものが定式化出来ない』(時枝問題とか)がある。
>という印象を私は持っています。

そうそう。おっしゃる通りかな
”1.あの公理系では「本来は成り立ってはいけない主張」が成立する”は、ピンと来ていませんが
”2.その一方で『扱えて欲しいものが定式化出来ない』(時枝問題とか)”は、確かに、測度論的確率論には、乗らないですね(^^

だから、数学セミナーの記事としては、適切ではなかったと
数学セミナーの記事としては、「測度論的確率論には乗らない。だから、これで扱える」くらいまで書かないと、数学セミナーの読者レベルでは混乱します
あるいは、「測度論的確率論には乗らない。だから、皆さん、新しい確率論を、一緒に考えましょう」とか
400: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)22:57 ID:8fQUKD9a(18/22)調 AAS
>>394
>★★★『この(物理、或いは社会)現象は「計算機でシュミレートできる」という場合。』★★★
>では『それで数学の厳密なモデルが出来上がった』と言っていいのか、という
>問題ですよね。纏めれば:

まあ、それは、量子力学の繰り込み理論とか
パスインテグラルとかの類似かと

厳密な数学が出来上がっていない
だから、解けるところから解いてみようという話と類似では?

あるいは、確率論のKolmogorovも同じかも
で、量子力学の繰り込み可能性が、現代素粒子論の結構セントラルドグマのようになってしまった

これに関連しているかどうか不明ですが、ミレニアム問題にも、量子力学の質量の導出が数学の未解決問題として挙げられています

https://ja.wikipedia.org/wiki/%E3%83%A4%E3%83%B3%E2%80%93%E3%83%9F%E3%83%AB%E3%82%BA%E6%96%B9%E7%A8%8B%E5%BC%8F%E3%81%A8%E8%B3%AA%E9%87%8F%E3%82%AE%E3%83%A3%E3%83%83%E3%83%97%E5%95%8F%E9%A1%8C
(抜粋)
ヤン?ミルズ方程式の存在と質量ギャップ問題とは、量子色力学および数学上の未解決問題である。2000年、アメリカ合衆国のクレイ数学研究所はミレニアム懸賞問題の一つとしてこの問題に100万ドルの懸賞金をかけた。

問題文は次の通り[1]。
ヤン・ミルズ方程式の存在と質量ギャップ問題。任意のコンパクトな単純ゲージ群 G に対して、非自明な量子ヤン・ミルズ理論がR^4 上に存在し、質量ギャップ Δ > 0 を持つことを証明せよ。
存在とは、Streater & Wightman (1964)、Osterwalder & Schrader (1973) や Osterwalder & Schrader (1975) で挙げられているものと少なくとも同等以上に強い公理的性質を確立することを含む。
このステートメントにおいて、ヤン=ミルズ理論は素粒子物理学の標準模型の基礎にあるものと類似した非可換な場の量子論である。R^4 は4次元ユークリッド空間であり、質量ギャップ(英語版) Δ はこの理論によって予言される最小質量を持つ粒子の質量である。
従って、勝者となるには以下を証明する必要がある。
・ヤン・ミルズ理論が存在し、現代の数理物理学、なかんづく構成的場の理論を特徴付けている厳密さの基準を満たすこと[2][3]。
・その理論が予言する力場における最小質量を有する粒子の質量が厳密に正であること。
402: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)23:08 ID:8fQUKD9a(19/22)調 AAS
>>399
>これは私の考え方ですが、もし目の前の「ある現象」を分析したいとします。その際に
>選択肢としては:
>1.微分方程式を立てる。(可能性はたったひとつ「ではない」けど。)
> 2.確率モデルを立てる。(これもひとつ「ではない」のは当然。)
> 3.もっと複雑な『何がしか』という可能性。

¥さん、どうも。スレ主です。
その話は、アインシュタインの一般性相対性理論の話を思い出しますね

アインシュタインの一般性相対性理論のあと、「一般相対性理論以外の重力理論も、数多く提案されているが、現在までにほとんどが観測的に棄却されている」と書かれていますね
「他に提案されたどの重力理論よりも一般相対性理論は単純な形をしていることから、重力は一般相対性理論で記述される、と考えるのが現代の物理学である」とも

https://ja.wikipedia.org/wiki/%E4%B8%80%E8%88%AC%E7%9B%B8%E5%AF%BE%E6%80%A7%E7%90%86%E8%AB%96
一般相対性理論
(抜粋)
アインシュタイン以後、一般相対性理論以外の重力理論も、数多く提案されているが、現在までにほとんどが観測的に棄却されている。
実質的に対抗馬となるのは、カール・ブランスとロバート・H・ディッケによるブランス・ディッケ重力理論であるが、現在の観測では、ブランス・ディッケ理論のパラメーターは、ほとんど一般相対性理論に近づけなくてはならず、両者を区別することが難しいほどである。
量子論と一般相対論の統一という物理学の試みは未だ進行中であるものの、一般相対性理論を積極的に否定する観測事実・実験事実は一つもない。他に提案されたどの重力理論よりも一般相対性理論は単純な形をしていることから、重力は一般相対性理論で記述される、と考えるのが現代の物理学である。
404: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)23:15 ID:8fQUKD9a(20/22)調 AAS
>>401
>ちょっと気に入ってる人が居るので宣伝しますが、来週末に数理研で「高木レクチャー」
>があります。そこで若いフランス人数学者で素晴らしく優秀な人が喋るようです。

今週? 7月8日(土)-9(日)ですね。” Hugo Duminil-Copin (Institut des Hautes Etudes Scientifiques)”ですね
http://www.ms.u-tokyo.ac.jp/~toshi/jjm/JJMJ/JJM_JHP/contents/takagi_jp/19th/index.htm
第19回高木レクチャー

平成29年7月8日(土)-9(日)
京都大学数理解析研究所
大講義室420号室

招待講演者: ? Mark Braverman (Princeton University)
"Information Complexity and Applications"
(情報の複雑性の理論とその応用)
[アブストラクト(HTML)]

? Hugo Duminil-Copin (Institut des Hautes Etudes Scientifiques)
"Sharp Threshold Phenomena in Statistical Physics"
(統計物理における相転移現象について)
[アブストラクト(HTML)]

? Roger E. Howe (Yale University)
"Duality and Rank in Representation Theory"
(表現論における双対性と階数)
[アブストラクト(HTML)]
407: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)23:29 ID:8fQUKD9a(21/22)調 AAS
>>405
>その『どっちのモデルでもそれなりに正しい』という話であれば、その典型例は天動説
>と地動説(の違い)ですよ。数値的に「合う・合わないの議論」が如何に当てにならな
>いか(ならなかったか)というのは、どうやら科学史の有名な話みたいです。

¥さん、どうも。スレ主です。
その話は、私も読んだことがあります。
私も、いつだったか忘れましたが(^^

でも、結局、地動説の方がすっきりしているし、予言能力が高い
ニュートンの法則で、全てが説明できますから
408: 現代数学の系譜 古典ガロア理論を読む 2017/07/04(火)23:30 ID:8fQUKD9a(22/22)調 AAS
>>406
¥さん、どうも。スレ主です。
長時間お付き合いありがとうございます
日付変更線が近づいてきましたので、また明日
では
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.046s