[過去ログ] 現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net (716レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
263
(2): 現代数学の系譜11 ガロア理論を読む 2016/11/12(土)07:10 ID:CRbt3jrT(1/14)調 AAS
レベル合わせをしておこう
現代数学は、無限を扱うことができる

1)無限について
http://c-faculty.chuo-u.ac.jp/~nishioka/
西岡國雄の頁 中央大
http://c-faculty.chuo-u.ac.jp/~nishioka/cardinal_15.pdf
「数学入門」の「無限」西岡國雄 中央大 2015

”現代数学の特徴は, 無限を頻繁に扱う点にあるが, 例題1.1, 1.2 に示されるように, 無限を扱うには特別の注意が必要である.”
”可算無限(アレフゼロ) と呼ぶ( 「N の濃度はアレフゼロ」)”
”1.3 有理数から実数へ “有理数からなる数列”で「基本列」と呼ばれる性質(1.7) を備えたものの極限全体を考え, それを実数R とよぶ.”(いわゆるコーシー列)

2)”無限(むげん、infinity)とは、限りの無いことである。
直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。”
https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90 より

2')∞は無限を示す記号である。数字の8を90度回転したような記号である。
https://ja.wikipedia.org/wiki/%E2%88%9E

3)公理的集合論:現在一般的に使われている集合の公理系は以下の ZFC である。
https://ja.wikipedia.org/wiki/%E5%85%AC%E7%90%86%E7%9A%84%E9%9B%86%E5%90%88%E8%AB%96
無限公理と選択公理

4)極限 ”無限遠点における挙動 関数の無限における極限においても、関数の発散を考えることができる。 f ( x ) → ∞ ( x → ∞ ) と表す。”
https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90

5)超限帰納法 ”数学的帰納法は、任意の整列集合に対して次のように一般化することができる。 任意濃度の集合は選択公理と同値な整列可能定理により整列順序を持つとすることができるので、選択公理を含む公理系であれば超限帰納法は任意濃度の集合に対して成立すると主張できる。”
https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E7%9A%84%E5%B8%B0%E7%B4%8D%E6%B3%95

つづく
264
(1): 現代数学の系譜11 ガロア理論を読む 2016/11/12(土)07:10 ID:CRbt3jrT(2/14)調 AAS
>>263 つづき

6)なので、例えば有限集合について定義された2項演算*を、無限の要素を含む2項演算に拡張することはよく行われる。数学的帰納法や極限を使って

7)集合の和(合併)∪なども、普段意識しないが、その類い。

8)順序集合ならば、合併は連接と見ることもできる。

9)文字集合を台集合とする有限のモノイドについて定義された2項演算*連接を、無限の要素を含む2項演算に拡張することは、数学的帰納法を使えば容易だろう
311
(1): 現代数学の系譜11 ガロア理論を読む 2016/11/19(土)10:52 ID:0Q0Vh9CE(1/46)調 AAS
レベル合わせその2 (>>263関連)
<無限とは>
1)(再録>>263)”無限(むげん、infinity)とは、限りの無いことである。
直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。”
https://ja.wikipedia.org/wiki/%E7%84%A1%E9%99%90 より
2)無限大は存在しますか? 2013年7月29日
https://qixil.jp/q/1491
最も支持が多い回答 柳生 三最 Lv.2 2013年7月30日

数学者ではありませんが、高校の数学を思い出して説明しますと
Sn = 1 + 1/2 + 1/3 + ・・・ + 1/n
という式が発散するのは高校の数学で習いました。
y = 1/x の積分を利用して評価するやつです。詳しい説明は省略します。
nが大きくなればなるほど増加する値は小さくなるのにSnが無限大に発散するのは不思議ですね。
しかしこれはある条件付きです。それは「nを無限に大きくし続ける事」です。

nの値をある場所で止めてしまったとたん、Snは有限値になります。
無限大の説明をしているのに、その説明の中で無限大を使ってしまうのは何ともナンセンスな気もしますが。。。
質問者様の数直線上に還元しての考えですが、
「直線」・・・無限に続く両端のない直線
「線分」・・・任意の点A,B を両端とするまっすぐな線
「半直線」・・・直線のどちらか一端がある

多少表現が間違っているかもしれませんが、ニュアンス的にはこんな感じだったと思います。
つまり、直線で考えている以上、両端は存在せず、無限大の点は置く事が出来ないということになります。
というわけで、私の考えでは、無限大は存在するが、表現する事は出来ない。と思います。
-------追記
あらゆる実数に対する有限回数の四則演算の繰り返しから無限大は導き出されうるかという問いに関しては、「有限回数」と含まれている限り、それは有限値になると思われます。
-------追記
Sn = 1 + 1/2 + 1/3 + ・・・ + 1/n
An = 1/n
Snはnを大きくすると大きくなり続けます → 発散 → ∞ と表記する
Anはnを大きくすると限りなく0に近づきます → 収束 → 0 と表記する
ではないでしょうか?
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s