[過去ログ] 現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net (716レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
174
(5): 現代数学の系譜11 ガロア理論を読む 2016/11/06(日)09:22 ID:ivLdkhn2(5/43)調 AAS
>>173
補足

(引用開始)
「(1)無限を直接扱う,
(2)有限の極限として間接に扱う,
・・・
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる.
ふしぎな戦略は,確率変数の無限族の独立性の微妙さをものがたる, といってもよい.」
(引用終了)

これは、(1)無限を直接扱う を否定している。だから、残る選択肢は、(2)有限の極限として間接に扱う だ
ところが、上記で見たように、(2)有限の極限として間接に扱う と、無限数列のしっぽによる同値類分類は、相性がよくない
果たして、(2)有限の極限として間接に扱う で、無限数列のしっぽによる同値類分類が完遂できるのか? 大きな問題だろう
176
(3): 現代数学の系譜11 ガロア理論を読む 2016/11/06(日)09:27 ID:ivLdkhn2(7/43)調 AAS
>>117 戻る

時枝記事の解法が成り立たない理由は、主に下記3つ
1)決定番号の確率分布は平均値も標準偏差も存在しない奇妙なものだから、100列で99/10は導けないこと(大数の法則も、中心極限定理も不成立だよ)
2)しっぽでの分類と決定番号を考えると、単純に考えて、z = 3.14159265358979…2718281828459… のようなキマイラ数列の扱いに困ることになる
  (可算無限個という単純な規定だけでは不十分で、キマイラ数列を排除する規定を加えないといけないよ)
3)無限数列のしっぽで同値類を分類するなど、従来の数学には無かったわけで、これを本当に扱えるかどうか
 lim(n→∞)の極限を考えている限り、コーシー列ならlim(n→∞) e/10^n→0で収束するが、しっぽの同値類では収束しないよ

補足
1)は、おそらく根本的な問題で、解決できないだろう。(100列で99/10は導けない)
2)は、なんとかなるかもしれないが、結構難しいと思う
3)も、結構致命的かな

なお、lim(n→∞)の極限を考えるという話は、上記時枝記事>>173-174にある通り
187
(2): 現代数学の系譜11 ガロア理論を読む 2016/11/06(日)11:19 ID:ivLdkhn2(12/43)調 AAS
>>179

>>110は別に難しいことはやってないよ
普通の代数和を使って、無限列は極限 lim(n→∞) で処理しただけ

それは、>>173-174 時枝記事 (2)有限の極限として間接に扱うの方針通り

別のやり方で、下記のような定義も可能だ
π= 3.14159 26535 8979… =a1. a2a3a4a5・・・an・・・
e= 2.71828 18284 5904… =b1. b2b3b4b5・・・bn・・・

ここで、πとeの少数第n-1位までの部分数列を定義する
πn= 3 14159 26535 8979・・・an =a1a2a3a4a5・・・an
en= 2 71828 18284 5904・・・bn =b1b2b3b4b5・・・bn

有限のモノイドの文字の連接(演算記号*とする)を借りると
πn*en=a1a2a3a4a5・・・an b1b2b3b4b5・・・bn

可算無限を考えるなら極限 lim(n→∞) を考えて
lim(n→∞) πn*en=a1a2a3a4a5・・・an… b1b2b3b4b5・・・bn…

前半がπを表現し、後半がeを表現する
この極限 lim(n→∞) は、大学数学では頻出テクでしょ

頭から連番が付かないから困る?
2つ添え字ijを使う。大学数学では頻出テク(>>61

前半を(1,1),(1,2),・・・・(1,n),・・・
後半を(2,1),(2,2),・・・・(2,n),・・・

とする。これで無問題
可付番で、可算無限だから、時枝記事の数列の定義に合う
233
(5): 現代数学の系譜11 ガロア理論を読む 2016/11/06(日)13:30 ID:ivLdkhn2(35/43)調 AAS
再録&修正>>176

時枝記事の解法が成り立たない理由は、主に下記3つ
1)決定番号の確率分布は平均値も標準偏差も存在しない奇妙なものだから、100列で99/10は導けないこと(大数の法則も、中心極限定理も不成立だよ)
2)しっぽでの分類と決定番号を考えると、単純に考えて、z = 3.14159265358979…2718281828459… のようなキマイラ数列の扱いに困ることになる
  (可算無限個という単純な規定だけでは不十分で、キマイラ数列を排除する規定を加えないといけないよ)
3)無限数列のしっぽで同値類を分類するなど、従来の数学には無かったわけで、これを本当に扱えるかどうか
 lim(n→∞)の極限を考えている限り、コーシー列ならlim(n→∞) e/10^n→0で収束するが、しっぽの同値類では収束しないよ

補足
1)は、おそらく根本的な問題で、解決できないだろう。(100列で99/10は導けない)
2)は、なんとかなるかもしれないが、結構難しいと思う
3)も、結構致命的かな。同値類を分類と決定番号の有限が両立しないように思う

なお、lim(n→∞)の極限を考えるという話は、上記時枝記事>>173-174にある通り
239
(1): 現代数学の系譜11 ガロア理論を読む 2016/11/06(日)13:42 ID:ivLdkhn2(39/43)調 AAS
>>230
時枝は、>>173-174で、無限を(2)有限の極限として間接に扱う と言っている
そして、”勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる” (注 (1)無限を直接扱う)

だから、” (1)無限を直接扱う”は否定されているのだから
可算無限個の箱の扱いは、必然(2)有限の極限として間接に扱うとならざるを得ないよ

そして暗に使っているだろ

”いったい無限を扱うには,
(1)無限を直接扱う,
(2)有限の極限として間接に扱う,
二つの方針が可能である.”
とある

二つしか方針はないのだから
294
(1): 現代数学の系譜11 ガロア理論を読む 2016/11/13(日)23:47 ID:V7Qq+5Yj(3/3)調 AAS
233 自分返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2016/11/06(日) 13:30:50.10 ID:ivLdkhn2
再録&修正>>176

時枝記事の解法が成り立たない理由は、主に下記3つ
1)決定番号の確率分布は平均値も標準偏差も存在しない奇妙なものだから、100列で99/10は導けないこと(大数の法則も、中心極限定理も不成立だよ)
2)しっぽでの分類と決定番号を考えると、単純に考えて、z = 3.14159265358979…2718281828459… のようなキマイラ数列の扱いに困ることになる
  (可算無限個という単純な規定だけでは不十分で、キマイラ数列を排除する規定を加えないといけないよ)
3)無限数列のしっぽで同値類を分類するなど、従来の数学には無かったわけで、これを本当に扱えるかどうか
 lim(n→∞)の極限を考えている限り、コーシー列ならlim(n→∞) e/10^n→0で収束するが、しっぽの同値類では収束しないよ

補足
1)は、おそらく根本的な問題で、解決できないだろう。(100列で99/10は導けない)
2)は、なんとかなるかもしれないが、結構難しいと思う
3)も、結構致命的かな。同値類を分類と決定番号の有限が両立しないように思う

なお、lim(n→∞)の極限を考えるという話は、上記時枝記事>>173-174にある通り
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.046s