[過去ログ] 現代数学の系譜11 ガロア理論を読む25 [無断転載禁止]©2ch.net (716レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
284: 2016/11/12(土)20:13 ID:38EadNqY(1)調 AAS
>>266
過去スレより
> 自然数全体の集合の順序数をωと書くことにするとωは可算無限集合の順序数のなかで最小の順序数である
> 任意の有限集合の順序数をnと書くことにすると n < ω であり
> n + ω = ω ≠ ω + ω
> よって自然数全体の集合は必ず「アタマ」=有限数列かつ「シッポ」=無限数列になる
> スレ主は前スレの631に自然数全体の集合には無限大は含まれていないと自分でコピペしているじゃないか
> ω {0, 1, 2, ...} すべての有限な順序数の集合
> ω+1 {0, 1, 2, ..., ω}
> https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0
> 順序数の和は一般には可換でない。例えば、1 + ω = ω ≠ ω + 1 である。
上の最後の式より
1 + (1 + ω) = 2 + ω = ω ≠ (ω + 1) + 1 = ω + 2
左右から1を加えることを有限回行えば任意の有限集合の順序数をnと書くことにすると
n < ω であり n + ω = ω < ω + n < ω + ω
長さωの無限数列があって左から有限数列を加えたものは長さωのままで変わりないので
R^ωの元の決定番号は有限であることを意味する
一方右から有限数列を加えた場合には長さは ω < ω + 1 < ω + 2 < ... < ω + n < ... < ω + ω
となるのでR^ωの元にはならない
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.031s