[過去ログ] 現代数学の系譜11 ガロア理論を読む8 (779レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
391
(4): 現代数学の系譜11 ガロア理論を読む 2014/03/10(月)22:25 AAS
この記事面白いね

http://d.hatena.ne.jp/ryamada/20130519/1368943654
2013-05-19 エキゾチックな球面 ryamada2013-05-19
■[微分幾何][トポロジー][四元数][クオータニオン][R][onion]多次元球のいろいろな張り合わせ

多次元視覚のことをやっている(こちら)
そうすると、視覚で取った情報から各点の微分に関する情報を取り出して、それによって対象を理解しようか、という話になる
じゃあ、ということで多様体上の微分のことが気になるのだが、そこには「球は球でも微分の状態が違うことがある」という話題がある
エキゾチックな球面という話である(こちら)
多次元球面ならどんなものでもエキゾチックな球面があるかというとそうでもないらしい
歴史的に最初に登場した7次元球面の話でこれをなぞってみることにする(7次元のエキゾチック球面)

今、四元数の性質から、q(x),q(y)のハミルトニアン積q(x)q(y)もやはり四元数でそのノルムが1だから
上半分の(x,y)と下半分の(x,y’)(ただしy’はハミルトニアン積(q(x)q(y)の4成分の係数が作る長さ4のベクトルとする)が1対1対応付けできる
(その貼りあわせも素直な対応関係だから微分可能で、そうすると、微分の仕方の違う球面ができる、という話)
Rでやってみよう。Rには四元数・八元数をハンドリングするonionパッケージがある(ハミルトニアン積の関数がどれだか分らなかったのであまりメリットを得ていないのだが…)
適当に回転させてその軌道が貼り合わせによって変わることをみる
394
(2): 現代数学の系譜11 ガロア理論を読む 2014/03/16(日)05:48 AAS
>>391
補足
下記がよくまとまっている
http://en.wikipedia.org/wiki/Exotic_sphere#CITEREFAkbulut2009

External links

Exotic sphere home page on the home page of Andrew Ranicki. Assorted source material relating to exotic spheres. http://www.maths.ed.ac.uk/~aar/exotic.htm

http://www.maths.ed.ac.uk/~aar/exotic.htm
Exotic spheres
An exotic sphere is an n-dimensional differentiable manifold which is homeomorphic but not diffeomorphic to the standard n-sphere Sn.
The articles on exotic spheres on the Wikipedia and the Manifold Atlas Project.
On manifolds homeomorphic to the 7-sphere, by J.Milnor, Ann. of Math. (2) 64, 399--405 (1956) http://www.maths.ed.ac.uk/~aar/papers/exotic.pdf
Hedrick Lectures on Differential Topology by J. Milnor (1965)

The structure set by A.Ranicki, Chapter 13 of Algebraic and Geometric Surgery, Oxford (2002)
Exotic spheres and curvature by M.Joachim and D.J.Wraith, Bull. A.M.S. 45, 595--616 (2008)
A minimal Brieskorn 5-sphere in the Gromoll-Meyer sphere and its applications. by C.Duran and T.Puttmann, Michigan Math. J. 56, 419--451 (2008)
On the work of Michel Kervaire in surgery and knot theory by A.Ranicki, Slides of lecture given at Kervaire memorial symposium, Geneva, 10-12 February, 2009.
Addendum Exotic spheres and the Kervaire invariant (8 May 2009)
An introduction to exotic spheres and singularities by A.Ranicki, Slides of lecture given in Edinburgh, 4 May 2012
Dusa McDuff and Jack Milnor (Somewhere in Scotland, 2011)
396: 現代数学の系譜11 ガロア理論を読む 2014/03/16(日)09:04 AAS
>>391

数学者の野口 廣さんと野口 宏さん は同じ方なんですね
http://oshiete.goo.ne.jp/keyword/%E9%87%8E%E5%8F%A3%E5%BB%A3
野口廣】の人気Q&Aランキング
はてなブックマークに追加
1位 数学者の野口さんについて
数学というより国語力の問題なのかもしれませんが、 数学者の野口 廣さんと野口 広さんと野口 宏さん は同じ方なんですか? トポロジーとか、昔だと位相空間とかいう本を 書かれていた方です。
425
(1): 現代数学の系譜11 ガロア理論を読む 2014/04/05(土)20:08 AAS
>>391

7次元は結構特殊なんだ・・
http://en.wikipedia.org/wiki/Seven-dimensional_space
Seven-dimensional space

In physics and mathematics, a sequence of n numbers can also be understood as a location in n-dimensional space. When n = 7,
the set of all such locations is called 7-dimensional Euclidean space. Seven-dimensional elliptical and hyperbolic spaces are also studied, with constant positive and negative curvature.

Abstract seven-dimensional space occurs frequently in mathematics, and is a perfectly legitimate construct.
Whether or not the real universe in which we live is somehow seven-dimensional (or indeed higher) is a topic that is debated and explored in several branches of physics, including astrophysics and particle physics, but it does not matter for mathematics.

Formally, seven-dimensional Euclidean space is generated by considering all real 7-tuples as 7-vectors in this space. As such it has the properties of all Euclidian spaces, so it is linear, has a metric and a full set of vector operations.
In particular the dot product between two 7-vectors is readily defined, and can be used to calculate the metric. 7 × 7 matrices can be used to describe transformations such as rotations which keep the origin fixed.

A distinctive property is that a cross product can be defined only in three or seven dimensions (see seven-dimensional cross product). This is due to the existence of quaternions and octonions.
520
(1): 現代数学の系譜11 ガロア理論を読む 2014/05/06(火)11:07 AAS
>>391
関連

>Rでやってみよう。Rには四元数・八元数をハンドリングするonionパッケージがある

http://ja.wikipedia.org/wiki/R%E8%A8%80%E8%AA%9E
R言語(あーるげんご)はオープンソース・フリーソフトウェアの統計解析向けのプログラミング言語及びその開発実行環境である。

ユーザープログラムを配信・利用できるCRANネットワーク機能
世界中のRユーザが開発したRプログラム(ライブラリ)(これを「パッケージ」と呼ぶ)がCRAN (The Comprehensive R Archive Network) と呼ばれるネットワークで配信されており、
それらをR環境単独でオンラインでダウンロード・インストール・アップグレードと一連の管理が可能である。

http://cran.r-project.org/web/packages/onion/index.html
onion: octonions and quaternions
A collection of routines to manipulate and visualize quaternions and octonions.
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.047s