ガロア第一論文と乗数イデアル他関連資料スレ18 (432レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
428
(2): 08/11(月)18:35 ID:u2QIQZty(1)調 AAS
任意の a>−1 なる実数と任意の正の整数nに対して
γ(a,n)=1+…+1/n−log(n+a)
とおく
以前、a=0 のとき、
γ:=lim_{n→+∞}(γ(0,n))=lim_{n→+∞}(1+…+1/n−log(n))
を有理数とすると矛盾が導けたからγは無理数で超越数かと一瞬思ったが、
任意の正の有理数が1個の正の整数の逆数和(例:1=1/1)
または相異なる有限個の正の整数の逆数和の形で表されるから、
実はγが有理数 q/p p、q は互いに素 であると仮定しても
γ−q/p=0 がいえるだけで γ−q/p>0 なることは導けないことが判明した
やはりγは有理数だった
任意の正の有理数が1個の正の整数の逆数和(例:1=1/1)
または相異なる有限個の正の整数の逆数和の形で表されること
を示せたときは少し感動した
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.024s