フェルマーの最終定理の証明 (636レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
538: 07/31(木)09:22 ID:QyItRY8I(1/5)調 AAS
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
539: 07/31(木)09:23 ID:QyItRY8I(2/5)調 AAS
(x+1)^2020=(x+1)^(2?1010)=(x^2+2x+1)^1010 =((x^2+1)+2x)^1010
((x^2+1)+2x)^1010
=(x^2+1)^1010+1010(x^2+1)^1009 2x+(_1010^ )C_2 (x^2+1)^1008 (2x)^2+
?+1010(x^2+1) (2x)^1009+(2x)^1010
(2x)^1010以外の項はx^2+1の倍数なのでpを適当な整数とすると
((x^2+1)+2x)^1010=p(x^2+1)+(2x)^1010……?

(2x)^1010=(4x^2 )^505=((4x^2+4)-4)^505
((4x^2+4)-4)^505
=(4x^2+4)^505+505(4x^2+4)^504 (-4)+(_505^ )C_2 (4x^2+4)^1008 (-4)^2+
?+505(4x^2+4) (-4)^1009+(-4)^1010
(-4)^1010以外の項は4x^2+4の倍数なのでqを適当な整数とすると
((4x^2+4)-4)^505=q(4x^2+4)+(-4)^1010
=4q(x^2+1)+(-2)^505 2^505
=4q(x^2+1)-2^1010……?
(x+1)^2020=p(x^2+1)+(2x)^1010
=p(x^2+1)+4q(x^2+1)-2^1010
=(x^2+1)(p+4q)-2^1010
540: 07/31(木)09:24 ID:QyItRY8I(3/5)調 AAS
∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)
t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α)
x:0→1 t:α→β
x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α)
∫_0^1?x^m (1-x)^n dx
=∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt
=1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)!
∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)

m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx
=-1/6 (β-α)^3
m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx
=-1/12 (β-α)^4
m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx
=(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5
541: 07/31(木)11:53 ID:QyItRY8I(4/5)調 AAS
a_1= [■(0@1@1)],a_2= [■(1@0@1)],a_3= [■(1@1@0)]
a_1→u_1
u_1=a_1/?a_1 ? =a_1/√(1+1)=1/√2 [■(0@1@1)]
a_2→u_2
b_1=(a_2?u_1 ) u_1=(1/√2 [■(1@0@1)]?[■(0@1@1)]) u_1=1/√2 1/√2 [■(0@1@1)]=1/2 [■(0@1@1)]
b_2=a_2-(a_2?u_1 ) u_1
=[■(1@0@1)]-1/2 [■(0@1@1)]=[■(1-0@0-1/2@1-1/2)]=[■(1@-1/2@1/2)]=1/2 [■(2@-1@1)]
?b_2 ?=1/2 √(4+1+1)=√6/2
u_2=b_2/?b_2 ? =2/√6 1/2 [■(2@-1@1)]=1/√6 [■(2@-1@1)]

a_3→u_3
c_1=(a_3?u_1 ) u_1=(1/√2 [■(1@1@0)]?[■(0@1@1)]) u_1=1/√2 1/√2 [■(0@1@1)]=1/2 [■(0@1@1)]
542: 07/31(木)11:54 ID:QyItRY8I(5/5)調 AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.016s