フェルマーの最終定理の証明 (642レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
560: 132人目の素数さん [] 2025/08/02(土) 10:19:32.22 ID:JM3Uouko ?+ax ?+bx=0 ??? λ^2+aλ+b=0 λ=α, β ⇒ x= C_1 e^αt+C_2 e^βt λ=α (重解) ⇒ x= C_1 e^αt+C_2 te^βt λ=α±βi ⇒ x= e^αt (C_1 cos?(βt)+C_2 cos?(βt)) λ^2-μ=0 0^2-4(-μ)=4μ (?@)μ>0のときλ=±√μなので X= C_1 e^(√μ x)+C_2 e^(-√μ x) X^'= C_1 √μ e^(√μ x)-C_2 √μ e^(-√μ x) 境界条件 u_x (0,t)=u_x (1,t)=0より u_x (0,t)=X^' (0)= C_1 √μ e^0-C_2 √μ e^0=(C_1-C_2 ) √μ=0 μ>0なので C_1-C_2=0 C_1=C_2 u_x (1,t)=X^' (1)= C_1 √μ e^√μ-C_2 √μ e^(-√μ)=(C_1 e^√μ-C_2 e^(-√μ) ) √μ=0 C_1=C_2なので (C_1 e^√μ-C_1 e^(-√μ) ) √μ= C_1 (e^√μ-e^(-√μ) ) √μ=0 μ>0、e^√μ-e^(-√μ)≠0なのでC_1=C_2=0 (※e^√μ=e^(-√μ)となるのはμ=0のときだけ) X(x)=0 ∴u(x,t)=X(x)T(t)=0 (?A)μ=0のとき重解なので X= C_1 e^0x+C_2 xe^0x=C_1+C_2 x 境界条件 u_x (0,t)=u_x (1,t)=0より X^' (0)=X^' (1)= C_2=0 X=C_1 http://rio2016.5ch.net/test/read.cgi/math/1745314067/560
561: 132人目の素数さん [] 2025/08/02(土) 10:20:00.55 ID:JM3Uouko ∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α) x:0→1 t:α→β x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α) ∫_0^1?x^m (1-x)^n dx =∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt =1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)! ∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx =-1/6 (β-α)^3 m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx =-1/12 (β-α)^4 m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx =(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5 http://rio2016.5ch.net/test/read.cgi/math/1745314067/561
562: 132人目の素数さん [] 2025/08/02(土) 10:21:19.23 ID:JM3Uouko 74x≡117 (mod 403) 74x + 403y = 117 403 = 74*5 + 33 74 = 33*2 + 8 33 = 8*4 + 1 1 = 33 - 8*4 = 33 - (74-33*2)*4 = 33*9 - 74*4 = (403-74*5)*9 - 74*4 = 403*9 - 74*49 74x + 403y = 117 74(-49)*117 + 403*9*117 = 117 74(x+117*49) - 403(y-9*17) = 0 74(x+5733) = 403(y-153) = 0 x + 5733 = 403k x = 403k - 5733 x≡-5733≡-5733 + 403*15 = 312 (mod 403) [確認] 312*74 = 23088 = 23088 - 403*57≡117 (mod 403) http://rio2016.5ch.net/test/read.cgi/math/1745314067/562
563: 132人目の素数さん [] 2025/08/02(土) 10:22:37.10 ID:JM3Uouko E(t)=Ri(t)+1/C ∫?i(t) dt i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t) E(t)=R dq(t)/dt+q(t)/C L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s) L[q(t)/C]=Q(s)/C L[E]=E/s E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C) Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR) 1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs s=0⇒A/CR=1 A=CR s=-1/CR⇒-B 1/CR=1 B=-CR Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR) L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) ) http://rio2016.5ch.net/test/read.cgi/math/1745314067/563
564: 132人目の素数さん [] 2025/08/02(土) 14:14:12.45 ID:JM3Uouko Q? √(6&2^(2x^2+15)/x^(4x+30) ) (x=√2n, n?5) ・・・・・(#12) x=e^logx 2=e^log2 2^(2x^2+15) = ?(e^log2)?^(2x^2+15)=e^((2x^2+15)log2) x^(4x+30)=?(e^logx)?^(4x+30)=e^((4x+30)logx) ここで (2x^2+15)log2 >(4x+30)logx (x?12) ・・・・・(#14) 2^(2x^2+15)/x^(4x+30) =e^((2x^2+15)log2)/e^((4x+30)logx) =e^((2x^2+15)log2-(4x+30)logx)>e^0 √(6&2^(2x^2+15)/x^(4x+30) )>√(e^0 )=1 x=√2n?12 、つまりn?72 のとき(#15)は成り立つ。 37?n?71⇒n?73?2n 19?n?36⇒n?37?2n 10?n?18⇒n?19?2n 6?n?9⇒n?11?2n n=4,5⇒n?7?2n n=3⇒3?6?6 n=2⇒2?3?4 n=1⇒1?2?2 http://rio2016.5ch.net/test/read.cgi/math/1745314067/564
565: 132人目の素数さん [] 2025/08/02(土) 14:14:36.79 ID:JM3Uouko y''+6y'+10y=2sin(x). D^2+6D+10=0. D=-3±i (D^2+6D+10)y=2sin(x) (D-(-3+i))(D-(-3-i))y=i(e^(-ix)-e^ix) y=1/(D-(-3+i))∙1/(D-(-3-i)) i(e^(-ix)-e^ix) a=-3+i, b = -3-i, f(x)=i(e^(-ix)-e^ix) と置くと y=1/(D-a)∙1/(D-b) f(x)=1/(D-b)∙1/(D-a) f(x) =1/(D-b) e^ax 1/D e^(-ax) f(x)=1/(D-b) e^ax ∫▒〖e^(-ax) f(x)〗 dx =e^bx 1/D e^(-bx) e^ax ∫▒〖e^(-ax) f(x)〗 dx =e^bx 1/D e^(a-b)x ∫▒〖e^(-ax) f(x)〗 dx =e^bx ∫▒(e^(a-b)x ∫▒〖e^(-ax) f(x)〗 dx) dx =e^(-(3+i)x) ∫▒(e^2ix ∫▒〖e^((3-i)x) i(e^(-ix)-e^ix)〗 dx) dx =e^(-(3+i)x) ∫▒(〖ie〗^2ix ∫▒〖e^((3-2i)x)-e^3x 〗 dx) dx =e^(-(3+i)x) i∫▒e^2ix (e^((3-2i)x)/(3-2i)-e^3x/3+A)dx =e^(-(3+i)x) i∫▒〖e^3x/(3-2i)-e^((3+2i)x)/3+A〗 e^2ix dx =e^(-(3+i)x) (〖ie〗^3x/(3(3-2i))-〖ie〗^((3+2i)x)/(3(3+2i))+A (i2e^2ix)/2i+B) =e^(-ix) e^(-3x) ((ie^3x)/(3(3-2i))-(〖ie〗^2ix e^3x)/(3(3+2i))+Ae^2ix+B) =e^(-ix) (i/(3(3-2i))-〖ie〗^2ix/(3(3+2i))+Ae^((2i-3)x)+Be^(-3x) ) =(ie^(-ix))/(3(3-2i))-(ie^ix)/(3(3+2i))+Ae^((i-3)x)+Be^(-(3+i)x) =i (3+2i)/3∙(cosx-isinx)/13-i (3-2i)/3∙(cosx+isinx)/13+e^(-3x) (Ae^ix+Be^(-ix)) =i (4icosx-6isinx)/39+e^(-3x) (Acosx+iAsinx+Bcosx-iBsinx) =(-4cosx+6sinx)/39+e^(-3x) ((A+B)cosx+i(A-B)sinx) =2sinx/13-4cosx/39+e^(-3x) (C_1 cosx+C_2 sinx) http://rio2016.5ch.net/test/read.cgi/math/1745314067/565
569: 132人目の素数さん [] 2025/08/02(土) 20:14:15.50 ID:JM3Uouko x ?+ax ?+bx=0 ??? λ^2+aλ+b=0 λ=α, β ⇒ x= C_1 e^αt+C_2 e^βt λ=α (重解) ⇒ x= C_1 e^αt+C_2 te^βt λ=α±βi ⇒ x= e^αt (C_1 cos?(βt)+C_2 cos?(βt)) λ^2-μ=0 0^2-4(-μ)=4μ (?@)μ>0のときλ=±√μなので X= C_1 e^(√μ x)+C_2 e^(-√μ x) X^'= C_1 √μ e^(√μ x)-C_2 √μ e^(-√μ x) 境界条件 u_x (0,t)=u_x (1,t)=0より u_x (0,t)=X^' (0)= C_1 √μ e^0-C_2 √μ e^0=(C_1-C_2 ) √μ=0 μ>0なので C_1-C_2=0 C_1=C_2 u_x (1,t)=X^' (1)= C_1 √μ e^√μ-C_2 √μ e^(-√μ)=(C_1 e^√μ-C_2 e^(-√μ) ) √μ=0 C_1=C_2なので (C_1 e^√μ-C_1 e^(-√μ) ) √μ= C_1 (e^√μ-e^(-√μ) ) √μ=0 μ>0、e^√μ-e^(-√μ)≠0なのでC_1=C_2=0 (※e^√μ=e^(-√μ)となるのはμ=0のときだけ) X(x)=0 ∴u(x,t)=X(x)T(t)=0 (?A)μ=0のとき重解なので X= C_1 e^0x+C_2 xe^0x=C_1+C_2 x 境界条件 u_x (0,t)=u_x (1,t)=0より X^' (0)=X^' (1)= C_2=0 X=C_1 http://rio2016.5ch.net/test/read.cgi/math/1745314067/569
570: 132人目の素数さん [] 2025/08/02(土) 20:14:40.68 ID:JM3Uouko ∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α) x:0→1 t:α→β x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α) ∫_0^1?x^m (1-x)^n dx =∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt =1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)! ∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1) m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx =-1/6 (β-α)^3 m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx =-1/12 (β-α)^4 m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx =(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5 http://rio2016.5ch.net/test/read.cgi/math/1745314067/570
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s