スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
278
(1): 07/21(月)23:42 ID:mqIGDCdy(3/5) AAS
>>275
>1)まず、列長さ有限Lのしっぽ同値類を考えると
無駄。
列の長さは可算無限だから。

>一つの同値類中の決定番号d有限は 全体比で0(零集合)。決定番号d=∞が、殆どすべて
決定番号は自然数と定義されている。
よっていかなる自然数も有限値。つまり決定番号=有限値がすべて。

>このdkは 上記2)項の通り ∞に発散している量
決定番号は自然数と定義されている。
100列の決定番号は100個の自然数であり発散していない。
省4
15: 01/15(水)11:34 ID:ZCTGHyhi(15/19) AAS
つづき

さて
1)決定番号d は、>>278に 書いたように
 >>205 都築暢夫 広島大 の意味で、
多項式環 F[x]から、一つ d-1次多項式 f(x)を選んだことに対応することは, すでに述べた
(簡単に要約すると、1列の可算無限列 R^N を形式的冪級数(つまりは形式的冪級数F[[x]]の元))
 と見て、一つの同値類で 形式的冪級数で
 代表 f[[x]]と 任意g[[x]]との差 g[[x]]-f[[x]]=f(x) (多項式)とできる ということ
 | f[[x]],g[[x]] ∈F[[x]] )
2)多項式環 F[x]は、>>205 都築暢夫 広島大 の意味で、任意nに対して 常にn+1が存在し
省23
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.025s