スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
127
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/07(土)08:51 ID:OvOEHj+C(1/5) AAS
>>126
>1列でダメだと2列以上でもダメという謎論理こそがゴマカシ
>論理が分からずごまかす落ちこぼれに数学は無理

1)”謎論理”ではないな
 1列において 箱入り無数目を成り立たせている(ように見せる)
 数学の原理を、しっかり考察しようということだよ
 箱入り無数目とは 発散する量の決定番号を使って、それがあたかも有限であるように扱うトリックを使っていることがわかる>>124
 即ち、箱入り無数目で ある1列の可算無限数列のしっぽ同値類とその代表から 決定番号dなるものを考えて
 d<d' なるd'を取ることができれば、d'+1以降の箱を開けて 同値類を決定し、代表列を決定し
 その代表列の d'番目の数を使って
省13
129
(1): 06/07(土)09:03 ID:NEDRGK6I(3/8) AAS
>>127
>d1<d2 or d1>d2 が成り立ち、確率1/2が導かれると思い込む(いま 簡便にd1=d2は 除外するとする)
君、決定番号は自然数であることを認めたよね?
「任意の二つの自然数d1,d2に対して d1<d2,d1>d2,d1=d2 のいずれか一つが成り立つ。」の反例が有ると言ってる? じゃ示して
130
(1): 06/07(土)09:06 ID:YE1vVdKF(2/5) AAS
>>127
>『 d<d' なる d' 』は、存在はするけれども、あたかも零集合のような存在であって

アタオカ?

『 d<d' なる d 』なら(無限集合の中の有限部分集合だから)零集合のような存在というのは分かるが
『 d<d' なる d 』は、(無限集合の中の有限部分集合の補集合だから)むしろほとんどすべてだろ?

つまり現代数学の系譜 雑談 ◆yH25M02vWFhP の「ナイーブ測度論」に基づくなら
1列の場合も、適当にある自然数d’を挙げれば
ほとんどすべての場合において、d’は既に決まっている1列の決定番号dを上回る(d’>d)

ただその場合、逆にd’が先に決まっているとして、列を後から作るとすると
ほとんどすべての場合において、列の決定番号dはd’を上回る(d’<d)
省6
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.025s