スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
118(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/06(金)17:15 ID:tJ92Py3q(3/5) AAS
>>112-113 追加自己レス
(引用開始)
4)これを、決定番号に当てはめると
いま、箱入り無数目で、Aさんが 好きな数を箱に入れて 可算無限列を作った
相手のBさんもまた、好きな数を箱に入れて 可算無限列を作った
箱入り無数目の手法で Aさんの列の決定番号dAと Bさんの列の決定番号dBと が分かる
Bさんは、dBを知って Aさんの列で dB+1以降の箱を開けて、列のしっぽ同値類とその代表を知る
代表のdB番目の数を知って、その数が AさんのdB番目の箱の数と一定していると唱える
(引用終り)
ここが一番のキモです
省14
119(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/06(金)17:25 ID:tJ92Py3q(4/5) AAS
>>118 タイポ訂正
同値類の代表列を使うことができて、代表列のd'+1番目の値を得ることができる
決定番号の定義により、代表列のd'+1番目の値=出題の実数列のd'+1番目の値であるので
これにて、めでたく 出題の実数列のd'+1番目の値を的中できる!
↓
同値類の代表列を使うことができて、代表列のd'-1番目の値を得ることができる
決定番号の定義により、代表列のd'-1番目の値=出題の実数列のd'-1番目の値であるので
これにて、めでたく 出題の実数列のd'-1番目の値を的中できる!
121: 06/06(金)18:03 ID:IafuK0N2(7/8) AAS
>>118
>2)さて、問題は 上記『何かの手段で 決定番号dの大きさを推測して d<d' なる d'を得た』の部分
> >>112の3)〜5)に 既に述べたように そのような d'なる値を得ることはできない
確率的になら可能。
2列のいずれかをランダム選択したとき、確率1/2でその決定番号は他方の決定番号より大きい(決定番号は異なると仮定)。
君、日本語が分からないの? なら国語からやり直しなよオチコボレさん。
尚、
> i)可算無限の実数列のシッポ同値類を作る(出題の実数列)
作る必要は無い。集合X上の同値関係〜を定義した瞬間に同値類全体の集合X/〜が存在している。
> ii)シッポ同値類の代表を一つ選ぶ
省1
122: 06/06(金)18:32 ID:BydzytW7(1) AAS
>>118
>いま、何かの手段で 決定番号dの大きさを推測して d<d' なる d'を得た
100列に分けたときに決定番号d1,…,d100が決まる
di>dj(i≠j)となるdiは1つしかない
そのようなdiを選ばなければ
選んだ列の決定番号djについて
それ以外の列の最大決定番号はdiだから
dj<diとなるdiが得られる
たったこれだけ
>問題は『何かの手段で 決定番号dの大きさを推測して d<d' なる d'を得た』の部分
省9
124(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/06(金)23:21 ID:8zjVGihS(3/3) AAS
>>118 追加自己レス 訂正再掲と補足
(引用開始)
4)これを、決定番号に当てはめると
いま、箱入り無数目で、Aさんが 好きな数を箱に入れて 可算無限列を作った
相手のBさんもまた、好きな数を箱に入れて 可算無限列を作った
箱入り無数目の手法で Aさんの列の決定番号dAと Bさんの列の決定番号dBと が分かる
Bさんは、dBを知って Aさんの列で dB+1以降の箱を開けて、列のしっぽ同値類とその代表を知る
代表のdB番目の数を知って、その数が AさんのdB番目の箱の数と一定していると唱える
(引用終り)
ここが一番のキモです
省24
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.024s