フェルマーの最終定理の簡単な証明 (541レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) レス栞 あぼーん
430: 与作 2024/12/27(金) 10:44:46.34 ID:nLZynGQ5(1/5)調 AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき4=xとなるので、成り立つ。
よって、(y-1)(y+1)=k2x/kも成り立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
432: 与作 2024/12/27(金) 12:49:29.27 ID:nLZynGQ5(2/5)調 AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、両辺の偶奇が異なるので、成り立たない。
よって、(y-1)(y^2+y+1)=k3(x^2+x)/kも成り立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
434: 与作 2024/12/27(金) 14:02:20.40 ID:nLZynGQ5(3/5)調 AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき両辺の偶奇が異なるので、成り立たない。
よって、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成り立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
436: 与作 2024/12/27(金) 16:28:35.59 ID:nLZynGQ5(4/5)調 AAS
AB=CDが成り立つならば、AB=kCD/kも成り立つ。
但し、ABCDは式とする。
438: 与作 2024/12/27(金) 21:18:43.84 ID:nLZynGQ5(5/5)調 AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき4=xとなるので、成り立つ。
よって、(y-1)(y+1)=k2x/kも成り立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 1.626s*