高校数学の質問スレ(医者・東大卒専用) Part438 (883レス)
高校数学の質問スレ(医者・東大卒専用) Part438 http://rio2016.5ch.net/test/read.cgi/math/1723152147/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
858: 132人目の素数さん [sage] 2025/06/01(日) 07:35:56.27 ID:/PZFDI/g auc = integrate(unnorm_posterior,0,Inf)$value integrate(\(x) x*unnorm_posterior(x)/auc, 0,Inf) log_auc <- log(integrate(\(x) exp(log(unnorm_posterior(x))), 0, Inf)$value) integrate(\(x) x * exp(log(unnorm_posterior(x)) - log_auc), 0, Inf)$value http://rio2016.5ch.net/test/read.cgi/math/1723152147/858
860: 132人目の素数さん [sage] 2025/06/01(日) 10:41:31.84 ID:/PZFDI/g はい、Gelmanらの推奨は確かに進化しており、近年ではハーフt分布(half-t)がより一般的に推奨されています。この変化の背景と具体的な推奨内容を、理論的根拠と実践的なアドバイスに分けて解説します。 1. Gelmanの推奨の変遷 (1) 初期(2006年頃): ハーフコーシー(自由度ν=1)の推奨 推奨理由: 分散パラメータの弱情報事前分布として適切 裾が重く、極端な値への過剰なペナルティを回避 問題点: 自由度ν=1ではスケールの選択に敏感 小規模データで不安定になる可能性 (2) 近年(2013年以降): 自由度ν>1のハーフt分布へ移行 推奨理由: 自由度ν=3〜7でより安定した推定が可能 スケールパラメータの影響が緩和 代表的な論文: Gelman et al. (2013), "The Prior Can Often Only Be Understood in the Context of the Likelihood" http://rio2016.5ch.net/test/read.cgi/math/1723152147/860
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.692s*