[過去ログ] 代数的整数論 009 (1001レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
632(2): Kummer ◆g2BU0D6YN2 2008/03/20(木) 11:50:38 AAS
定義
K を実数体または複素数体とする。
E, F を K 上の位相線形空間とする。
L(E, F) を E から F への連続な線形写像全体とする。
L(E, F) の単純収束の位相(>>57)に関して有界(>>35)な部分集合を
L(E, F) の単純有界な部分集合と言う。
633(3): Kummer ◆g2BU0D6YN2 2008/03/20(木) 13:00:14 AAS
定義
K を実数体または複素数体とする。
E, F を K 上の局所凸空間とする。
L(E, F) を E から F への連続な線形写像全体とする。
L(E, F) の部分集合 H が単純有界(>>632)であるためには
F の任意の連続な半ノルム p と任意の x ∈ E に対して
{ p(f(x)) | f ∈ H } が有界であることが必要十分である。
証明
>>15より F の 0 の近傍で樽となるもの全体は 0 の基本近傍系となる。
F の連続な半ノルム p に対して
V(p, 1) = { x ∈ F | p(x) ≦ 1 } とおく。
過去スレ008の520より V(p, 1) は樽である。
よって、>>19より V(p, 1) の全体は 0 の基本近傍系である。
F の連続な半ノルム p と E の有限部分集合 A に対して
W(A, p) = { f ∈ L(E, F) | x ∈ A のとき p(f(x)) ≦ 1 } とおく。
W(A, p) の全体は L(E, F) の単純収束に位相の 0 の基本近傍系である。
H が単純有界であるとは、FE の任意の連続な半ノルム p と
E の任意の有限部分集合 A に対して、ある λ ∈ K, λ ≠ 0 があり、
H ⊂ λW(A, p) となることである。
g ∈ λW(A, p) であることは
x ∈ A のとき p((1/λ)g(x)) ≦ 1 即ち p(g(x)) ≦ |λ| と同値である。
これから命題の主張は明らかである。
証明終
634(3): Kummer ◆g2BU0D6YN2 2008/03/20(木) 13:14:28 AAS
定理(一般化されたBanach-Steinhausの定理)
K を実数体または複素数体とする。
E を K 上の樽型空間(>>617))とし、F を K 上の局所凸空間とする。
L(E, F) を E から F への連続な線形写像全体とする。
L(E, F) の任意の単純有界(>>632)な部分集合 H は同程度連続である。
証明
F の任意の連続な半ノルム p に対して q = sup { pf | f ∈ H } とおく。
即ち、任意の x ∈ E に対して q(x) = sup { p(f(x)) | f ∈ H } である。
>>633 より、任意の x ∈ E に対して q(x) は有限である。
従って q は E の半ノルムである。
p は連続だから f ∈ H のとき pf は連続、従って下半連続
(過去スレ008の113)である。
過去スレ008の116より q も下半連続である。
>>623 より q は連続である。
>>631 より H は同程度連続である。
証明終
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.067s