大学数学の質問スレ Part1 (333レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
320: 2025/09/07(日) 03:04:58.83 ID:yy3tyOmP(1/3)調 AAS
James R. Munkres著『Analysis on Manifolds』

重積分の変数変換の公式ですが、独特です。

まず、広義積分については、開集合上でしか考えていません。
ですので、非有界な積分領域での積分や非有界連続関数の積分は、積分領域が開集合である場合しか考えません。

開集合上の積分についての約束ですが、それが有界であり、かつ、被積分関数が有界連続である場合には特に断らない限り、その積分は広義積分であるという約束をしています。

変数変換の公式ですが、この公式に登場する積分は広義積分のみです。
広義積分でない積分に対しては変数変換の公式を考えません。

このようなアプローチってどうですか?
321: 2025/09/07(日) 03:07:02.06 ID:yy3tyOmP(2/3)調 AAS
訂正します:

James R. Munkres著『Analysis on Manifolds』

重積分の変数変換の公式ですが、独特です。

まず、広義積分については、開集合上でしか考えていません。
ですので、非有界な積分領域での積分や非有界連続関数の積分は、積分領域が開集合である場合しか考えません。

開集合上の積分についての約束ですが、積分領域が有界であり、かつ、被積分関数が有界連続である場合には特に断らない限り、その積分は広義積分であるという約束をしています。

変数変換の公式ですが、この公式に登場する積分は広義積分のみです。
広義積分でない積分に対しては変数変換の公式を考えません。

このようなアプローチってどうですか?
322: 2025/09/07(日) 03:14:39.28 ID:yy3tyOmP(3/3)調 AAS
積分領域が有界開集合であり、かつ、被積分関数が有界連続である場合、広義積分はかならず存在します。
積分領域が有界開集合であり、かつ、被積分関数が有界連続である場合、非広義積分が存在する場合には、その値は広義積分の値に一致します。
S を有界集合とし、 f を有界連続とするとき、 f が S 上で非広義積分可能であれば、 f は Int S 上で非広義積分可能であり、 S 上での非広義積分の値と Int S 上での非広義積分の値は一致するという定理もあります。

ですので、上のようなアプローチでも問題ないとしています。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.024s