フェルマーの最終定理の証明 (888レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
854: 132人目の素数さん [] 2025/09/17(水) 05:04:24.75 ID:erGd2uYu ∫[0→π/2]( tan(x) )^(1/n) dx (n≧2) ∫_0^(π/2)?(tan(x))^(1/n) dx を求める。 t=?sin?^2 x=(sin(x))^2 ?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t dt=2sin(x)cos(x)dx=2√t √(1-t) dx dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt (sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n) ∫_0^(π/2)?(tan(x))^(1/n) dx=∫_0^(π/2)?( (sin(x))^(1/n))/( (cos(x))^(1/n) ) dx=∫_0^(π/2)?( t^(1/2n))/(1-t)^(1/2n) (t^(-1/2) (1-t)^(1/2))/2 dt =1/2 ∫_0^(π/2)???t^(1/2n) (1-t)^(-1/2n) t?^(-1/2) (1-t)^(-1/2) ? dt =1/2 ∫_0^(π/2)??t^(1/2n-1/2) (1-t)^(-1/2n-1/2) ? dt =1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt =1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt (1/2) B(1/2+1/(2n), 1/2-1/(2n)) = (1/2) Γ( 1/2+1/(2n) ) Γ( 1/2-1/(2n) ) / Γ( 1/2+1/(2n) + 1/2-1/(2n) ) = (1/2) Γ(z) Γ(1-z) / Γ(1) = (1/2) ( π/sin(πz) ) / 0! = π/( 2 sin(πz) ) = π/( 2 sin(π/2+π/(2n)) ) = π/( 2 cos(π/(2n)) ). http://rio2016.5ch.net/test/read.cgi/math/1745314067/854
855: 132人目の素数さん [] 2025/09/17(水) 05:04:59.82 ID:erGd2uYu f(z)=1/(1-z) z=i で展開 ?@) |z-i|<√2 (1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i) 1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i)) =1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?) =(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +? =((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +? =納n=0→∞]((1+i)/2)^(n+1) (z-i)^n ※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2 ?A) |z-i|>√2の場合 |z-i|/√2=|(z-i)/(1-i)|>1 すなわち、0<|(1-i)/(z-i)|<1となるから((1-i)/(z-i))^n の級数展開を考える。 1/(1-z)=1/(1-i-(z-i) )=-1/(z-i)?1/(1-(1-i)/(z-i)) =-1/(z-i) (1+((1-i)/(z-i))+((1-i)/(z-i))^2+((1-i)/(z-i))^3+?) =-(1/(z-i)+(1-i)/(z-i)^2 +(1-i)^2/(z-i)^3 +?) =-(1/(z-i)+2/(1+i)(z-i)^2 +2^2/?(1+i)^2 (z-i)?^3 +?) =-((2^0 (z-i)^(-1))/(1+i)^0 +(2^1 (z-i)^(-2))/(1+i)^1 +(2^2 (z-i)^(-3))/(1+i)^2 +?) =-(?(1+i)^0 (z-i)?^(-1)/2^0 +?(1+i)^(-1) (z-i)?^(-2)/2^(-1) +((1+i)^(-2) (z-i)^(-3))/2^(-2) +?) =-納n=1→∞]((1+i)/2)^(1-n) (z-i)^(-n) ※(1-i)^2=(1-i)(1-i)=(1-i)(1+i)/(1+i)?(1-i)(1+i)/(1+i)=2^2/(1+i)^2 (1-i)^n=2^n/(1+i)^n http://rio2016.5ch.net/test/read.cgi/math/1745314067/855
856: 132人目の素数さん [] 2025/09/17(水) 05:08:27.79 ID:erGd2uYu (x+1)^2020 をx^3+x^2+x+1で割った余り x^3+x^2+x+1=x^2(x+1)+(x+1)=(x^2+1)(x+1) (x+1)^2019≡P(x) (mod x^2+1) (x+1)^2020≡P(x)(x+1) (mod (x^2+1)(x+1)) x^3+x^2+x+1=x^2 (x+1)+(x+1)=(x^2+1)(x+1) x^2≡-1 (mod x^2+1) (x+1)^2019=(x+1)(x+1)^2018 (x+1)^2018=(x+1)^(2?1009)=((x^2+1)+2x)^1009 ≡(2x)^1009≡2^1009 x^1008 x≡2^1009 x^(2?504) x ≡2^1009 (-1)^504 x≡2^1009 x (mod x^2+1) (x+1)^2019≡2^1009 x(x+1) ≡2^1009 (x^2+x) ≡2^1009 (x-1) (mod x^2+1) (x+1)^2020≡(x+1)(2^1009 )(x-1) ≡(x^2-1) 2^1009 (mod (x+1)(x^2+1)) http://rio2016.5ch.net/test/read.cgi/math/1745314067/856
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.038s