[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)20 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
949
(1): 07/20(日)15:34 ID:2Jr4cGNB(12/29) AAS
>>588
>2)”実質同じ”? 証明は?

定義1
 論理式φ(x)を下記で定義する。
 φ(x):={}∈x∧∀y(y∈x→y∪{y}∈x)
 φ(x)を満たすxを帰納的集合と呼ぶ。

定義2
 集合ω、Nを下記で定義する。
 ω:={y∈X|∀x(φ(x)→y∈x)}
 M:={x⊂A|φ(x)},N:=∩M
 ここでX,Aは帰納的集合を任意にひとつ選んだものとする。
964
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 07/20(日)18:34 ID:JxJPBISF(2/10) AAS
>>949-950
>補題1
> ωは任意の帰納的集合の共通部分である。

うむ
1)その結論は、正しい。下記の独 de.wikipediaの英訳
 Infinity axiomで、”The natural numbers are therefore defined as the intersection of all inductive sets, as the smallest inductive set.”
 とある通りだ
2)ところで 下記の 独 de.wikipedia Infinity axiom では
 記号∩ 使ってないよ?
 記号∩ は、使わなくてもいいの?
 記号∩ は、使わなくてもいいのならば、その方がすっきりしてないかな?w ;p)

(参考)
https://de.wikipedia.org/wiki/Unendlichkeitsaxiom
(google翻訳 独→英)
Infinity axiom
The axiom of infinity is an axiom of set theory that postulates the existence of an inductive set . It is called the axiom of infinity because inductive sets are also infinite sets .

formulation
There are a lot A, which is the empty set ∅ and with each element
x∈A also the amount x∪{x}contains.
∃A:(∅∈A∧∀x:(x∈A⇒x∪{x}∈A))
The infinity axiom does not merely postulate, as the name might suggest, the existence of any infinite set. It postulates the existence of an inductive set and thus, consequently, the existence of the set of natural numbers according to John von Neumann's model .

Significance for mathematics
Natural numbers
By the existence of at least one inductive set
I together with the exclusion axiom, the existence of natural numbers as a set is also ensured:
N:={x∈I∣∀z(z inductive ⟹ x∈z)}
The natural numbers are therefore defined as the intersection of all inductive sets, as the smallest inductive set.
省2
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.045s