フェルマーの最終定理の証明 (873レス)
1-

1
(10): 与作 04/22(火)18:27 ID:ZBPrKUfk(1) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=1のとき、成立つので、k=1以外でも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
764: 08/31(日)10:48 ID:Bq8GdLuV(1/6) AAS
f(z)=1/(1-z) z=i で展開
?@) |z-i|<√2
(1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i)
1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i))
=1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?)
=(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +?
=((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +?
=納n=0→∞]((1+i)/2)^(n+1) (z-i)^n
※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2

?A) |z-i|>√2の場合
|z-i|/√2=|(z-i)/(1-i)|>1
すなわち、0<|(1-i)/(z-i)|<1となるから((1-i)/(z-i))^n の級数展開を考える。
1/(1-z)=1/(1-i-(z-i) )=-1/(z-i)?1/(1-(1-i)/(z-i))
=-1/(z-i) (1+((1-i)/(z-i))+((1-i)/(z-i))^2+((1-i)/(z-i))^3+?)
=-(1/(z-i)+(1-i)/(z-i)^2 +(1-i)^2/(z-i)^3 +?)
=-(1/(z-i)+2/(1+i)(z-i)^2 +2^2/?(1+i)^2 (z-i)?^3 +?)
=-((2^0 (z-i)^(-1))/(1+i)^0 +(2^1 (z-i)^(-2))/(1+i)^1 +(2^2 (z-i)^(-3))/(1+i)^2 +?)
=-(?(1+i)^0 (z-i)?^(-1)/2^0 +?(1+i)^(-1) (z-i)?^(-2)/2^(-1) +((1+i)^(-2) (z-i)^(-3))/2^(-2) +?)
=-納n=1→∞]((1+i)/2)^(1-n) (z-i)^(-n)
※(1-i)^2=(1-i)(1-i)=(1-i)(1+i)/(1+i)?(1-i)(1+i)/(1+i)=2^2/(1+i)^2
(1-i)^n=2^n/(1+i)^n
765: 08/31(日)10:49 ID:Bq8GdLuV(2/6) AAS
Δr↑=r↑(t+Δt)-r(t). |r↑|=Δs≒RΔθ.
R≒Δs/Δθ, Δx→0⇒Δs→0
1/R=lim[Δx→0])Δθ/Δs=dθ/ds
Δs=√((Δx)^2+(Δy)^2)=√((Δx)^2+(Δy)^2)/(Δx)^2 (Δx)^2 )=√(1+(Δy/Δx)^2 ) Δx
tan(Δθ)= tan(β-θ)=(tanβ-tanθ)/(1+tanβtanθ)=(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
Δθ≠tan(Δθ)=(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
Δθ/Δs=((y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x)))/(√(1+(Δy/Δx)^2 )Δx)
=1/√(1+(Δy/Δx)^2 )?1/Δx?(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
=1/√(1+(Δy/Δx)^2 )?(y'(x+Δx)-y'(x))/Δx?1/(1+y'(x+Δx)y'(x))
1/R=dθ/ds=(lim)[Δx→0]Δθ/Δs
=1/√(1+(dy/dx)^2 )(d^2 y)/(dx^2 )1/(1+(dy/dx)^2 )
=((d^2 y)/(dx^2 ))/(1+(dy/dx)^2 )^(3/2)
766: 与作 08/31(日)13:03 ID:UWxBdGA7(1/5) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
767: 08/31(日)13:03 ID:Bq8GdLuV(3/6) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
768: 与作 08/31(日)13:03 ID:UWxBdGA7(2/5) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
769: 08/31(日)13:04 ID:Bq8GdLuV(4/6) AAS
y''+y=sin(2x)
λ^2+1=0 λ=0±i
y_0=C_1 cos(x)+C_2 sin(x)
y_1=cos(x), y_2=sin(x)
?y_1?^'=-sin(x), ?y_2?^'=cos(x)
W=|?( cos(x)@-sin(x) )?( sin(x) @ cos(x) )|
=?cos?^2 (x)+?sin?^2 (x)=1
y_s (x)=-y_1 ∫?(y_2 R(x))/W dx+y_2 ∫?(y_1 R(x))/W dx
=-cos(x) ∫?sin(x)sin(2x) dx+sin(x) ∫?cos(x)sin(2x) dx
∫?sin(2x)sin(x) dx=-1/2 ∫??cos(2x+x)-cos(2x-x) ? dx
=-1/2 ∫??cos(3x)-cos(x) ? dx=-1/2?1/3 sin(3x)+1/2 sin(x)
=-1/6 sin(3x)+1/2 sin(x)
∫?sin(2x)cos(x) dx=1/2 ∫??sin(2x+x)+sin(2x-x) ? dx
=1/2 ∫??sin(3x)+sin(x) ? dx=1/2?(-1)/3 cos(3x)+(-1)/2 cos(x)
=-1/6 cos(3x)-1/2 cos(x)
y_s (x)
=-cos(x)(-1/6 sin(3x)+1/2 sin(x))+sin(x)(-1/6 cos(3x)-1/2 cos(x))
=1/6 sin(3x)cos(x)-1/2 sin(x)cos(x)-1/6 cos(3x)sin(x)-1/2 sin(x)cos(x)
=1/6 sin(3x-x)-sin(x)cos(x)=1/6 sin(2x)-1/2 sin(2x)
=-1/3 sin(2x)
∴y=C_1 cos(x)+C_2 sin(x)-1/3 sin(2x)
770: 与作 08/31(日)13:04 ID:UWxBdGA7(3/5) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
771: 与作 08/31(日)15:05 ID:UWxBdGA7(4/5) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
772: 与作 08/31(日)15:06 ID:UWxBdGA7(5/5) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
773: 08/31(日)19:39 ID:Bq8GdLuV(5/6) AAS
y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1)
y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1)
=(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) )
=- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x)

y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x)
=C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x)
=(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
y_s=1/2cos(x)
y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x)
=C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x)
=(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
774: 08/31(日)19:39 ID:Bq8GdLuV(6/6) AAS
f^((k) ) (z)=(n!/2πi)?_Cf(ζ)/(ζ-z)^(k+1)dζ
?@)n=1のとき
f(z)=1/( 2πi) ?_Cf(ζ)/((ζ-z) ) dζ
f(z+h)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+Δz) ) dζ
f(z+h)-f(z)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+h) )-f(ζ)/((ζ-z) ) dζ
=1/( 2πi) ?_Cf(ζ)((ζ-z)-(ζ-z-h))/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)(ζ-z-ζ+z+h)/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)h/(ζ-z-h)(ζ-z)dζ
=h/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
( f(z+h)-f(z))/h=1/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
 h→0
f'(z)= f^((1)) (z)=1/2πi ?_C(f(ζ))/(ζ-z)^2dζ
?A)n=k(k=1,2,3,…)のとき
f^((k)) (z)=k!/2πi ?_C(f(ζ))/(ζ-z)^(k+1)dζ ⇒f^((k+1)) (z)=(k+1)!/( 2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ
f^((k)(z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_Cf(ζ)/(ζ-(z+h))^(k+1) -f(ζ)/(ζ-z)^(k+1)dζ
=k!/( 2πih) ?_C((ζ-z)^(k+1)-(ζ-z-h)^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ??※
(a+b)^(k+1)
=(_k+1^ )C_0 a^n b^0+(_k+1^ )C_1 a^(k+1-1) b^1+(_k+1^ )C_2 a^(k+1-2) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+?+b^(k+1)
=a^(k+1)+(k+1) a^k b+(_k+1^ )C_2 a^(k-1) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+? +b^(k+1)
(ζ-z-h)^(k+1)
=(ζ-z)^(k+1)-(k+1) (ζ-z)^k h + (_k+1^ )C_2 (ζ-z)^(k-1) h^2-?+h^(k+1)
(ζ-z)^(k+1)-(ζ-z-h)^(k+1)
=(k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1)
( f^((k) ) (z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_C((k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
=(k+1)!/( 2πi) ?_Cf(ζ)/((ζ-z-h)^(k+1) (ζ-z) ) dζ-k!/( 2πi) ?_C((_k+1^ )C_2 (ζ-z)^(k-1) h-?+h^k)/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
 h→0
f^((k+1)) (z)=(k+1)!/(2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ
775: 与作 09/01(月)05:48 ID:MNjTVEaY(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
776: 与作 09/01(月)05:50 ID:MNjTVEaY(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
777: 与作 09/01(月)05:51 ID:MNjTVEaY(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
778: 09/01(月)08:57 ID:b44elzXy(1/6) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
779: 09/01(月)09:08 ID:b44elzXy(2/6) AAS
F(ω)=∫[-∞→∞]f(t)e^(-jωt)dt
f(t)= F^(-1) [F(ω)]=1/2π ∫[-∞→∞]F(ω) e^jωt ? dω
g(t)={(0(t<0):f(t)e^(-σt)t≧0)
G(ω)=∫[-∞→∞]g(t)e^(-jωt)dt
=∫[0→∞]g(t)e^(-jωt)dt
=∫[0→∞]f(t)e^(-σt)e^(-jωt)dt
=∫[0→∞]f(t)e^(-(σ+jω)t)dt
s=σ+jω
F(s)=∫[0→∞]f(t)e^(-st)dt
s=σ+jω  ds=jdω  ω: -∞ → ∞
s:σ-j∞→σ+j∞
g(t)=(1/2π)[-∞→∞]F(s)e^jωtdω
=(1/2πj)∫[σ-j∞→σ+j∞]F(s)e^jωtds
f(t)e^(-σt)=f(t)/e^σt
=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^jωtds
f(t)=(1/2πj)∫[σ-j∞→σ+j∞]F(s)e^σt e^jωtds
=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^(σ+jω)tds
f(t)=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^stds
780: 09/01(月)09:20 ID:b44elzXy(3/6) AAS
f(θ)=a_0/2+?[k=1→∞](a_k cos(kθ)+b_k sin(kθ))
a_k=1/π ∫[-π→π]f(θ)cos(kθ)dθ)
b_k=1/π ∫[-π→π]f(θ)sin(kθ)dθ

e^jθ =cosθ+jsinθ
e^(-jθ)=cosθ-jsinθ
cosθ=(e^jθ+e^(-jθ))/2. sinθ=(e^jθ-e^(-jθ))/2j.
f(θ)=a_0/2+?[k=1→∞](a_k (e^jkθ+e^(-jkθ))/2+b_k (e^jkθ-e^(-jkθ))/2j)
=a_0/2+?[k=1→∞](a_k(e^jkθ+e^(-jkθ))/2+?jb?_k (e^(-jkθ)-e^jkθ)/2)
=a_0/2+?[k=1→∞]((a_k-jb_k)/2 e^jkθ) +?[k=1→∞]((a_k+jb_k)/2 e^(-jkθ) )
a_(-k)=(1/π)∫[-π→π]f(θ)cos(-kθ)dθ)
=(1/π)∫[-π→π]f(θ)cos(kθ)dθ)=a_k
b_(-k)=(1/π)∫[-π→π]f(θ)sin(-kθ)dθ
= -1/π ∫[-π→π]f(θ)sin(kθ)dθ= -b_k
f(θ)
=?[k=1→∞]((a_k+jb_k)/2 e^(-jkθ) ) +a_0/2+?[k=1→∞]((a_k-jb_k)/2 e^jkθ )
=(a_2+jb_2)/2 e^(-j2θ)+(a_1+jb_1)/2 e^(-j1θ)+a_0/2+(a_1-jb_1)/2 e^j1θ+(a_2-jb_2)/2e^j2θ+?
=(a_(-2)-jb_(-2))/2 e^j2θ+(a_(-1)-jb_(-1))/2 e^j1θ+a_0/2+(a_1-jb_1)/2 e^j1θ+(a_2-jb_2)/2 e^j2θ+?
=?_(k=-∞)^∞?((a_k-jb_k)/2 e^jkθ )
c_k=(a_k-jb_k)/2
f(θ)=?[k=-∞→∞]c_k e^jkθ
c_k=(a_k-jb_k)/2
=(1/2π)∫[-π→π]f(θ)cos(kθ)dθ-(j/2π)∫[-π→π]f(θ)sin(kθ)dθ
=(1/2π)∫[-π→π]f(θ)(cos(kθ)-jsin(kθ))dθ
=(1/2π)∫[-π→π]f(θ)(cos(-kθ)+jsin(-kθ))dθ
=(1/2π)∫[-π→π]f(θ)(cos(-kθ)+jsin(-kθ))dθ
=(1/2π)∫[-π→π]f(θ)e^(-jkθ)dθ
781: 09/01(月)09:21 ID:b44elzXy(4/6) AAS
f(τ)=0 ∴f(τ)g(t-τ)=0
g(t-τ)=0 ∴f(τ)g(t-τ)=0
f*g(t)=∫_(-∞)^∞??f(τ)g(t-τ)dτ?
=∫_(-∞)^0??f(τ)g(t-τ)dτ?+∫_0^∞??f(τ)g(t-τ)dτ?=0
τ<0⇒f(τ)=0 ∴f(τ)g(t-τ)=0
0?τ?t⇒t-τ?0 ∴f(τ)=e^(-τ), g(t-τ)=t-τ
τ>t⇒t-τ<0 ∴g(t-τ)=0, f(τ)g(t-τ)=0
f*g(t)=∫_0^t??e^(-τ) (t-τ)dτ?=∫_0^t??(-e^(-τ) )^' (t-τ)dτ?
=-[?( @e^(-τ)@ )(t-τ)]_0^t-∫_0^t??-e^(-τ) (-1)dτ?
=t-∫_0^t??e^(-τ) dτ? =t+[?( @e^(-τ)@ )]_0^t=t+e^(-t)-1
τ<0⇒f(τ)=0 ∴f(τ)g(t-τ)=0
t-τ>1⇒g(t-τ)=0 ∴f(τ)g(t-τ)=0
t-τ?1 ⇒ f(τ)=e^(-τ), g(t-τ)=t-τ
f*g(t)=∫_(t-1)^t??e^(-τ) (t-τ)dτ?=∫_(t-1)^t??(-e^(-τ) )^' (t-τ)dτ?
=-[?( @e^(-τ)@ )(t-τ)]_(t-1)^t-∫_(t-1)^t??e^(-τ) dτ?
=-(0-e^(1-t) )+[?( @e^(-τ)@ )]_(t-1)^t=e^(1-t)+e^(-t)-e^(1-t)=e^(-t)
782: 09/01(月)20:13 ID:b44elzXy(5/6) AAS
C:x=x(t),y=y(t)
OP↑=r(t)=(x(t),y(t))
OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt))
Δs=|Δr|=|Δr(t+Δt)-r(t)|
RΔθ≒Δs,1/R=Δθ/Δs
1/R=lim[Δt→0](Δθ/Δs)=dθ/ds
dr/dt=rDt
r Dt=(x Dt,y Dt)
r ?(t+Δt)=(x ?(t+Δt),y ?(t+Δt))
r Dt=r ?=(x ?,y ?)
r ?(t+Δt)= r ?_Q=(x ?_Q,y ?_Q)
Δr ? ?Δr ?_Q ΔsinΔθ=det(r ?,r ?_Q)
ΔθΔsinΔθ=(det(r ?,r ?_Q))/Δr ? ?Δr ?_Q ?
783: 09/01(月)20:14 ID:b44elzXy(6/6) AAS
f^((k) ) (z)=(n!/2πi)?_Cf(ζ)/(ζ-z)^(k+1)dζ
?@)n=1のとき
f(z)=1/( 2πi) ?_Cf(ζ)/((ζ-z) ) dζ
f(z+h)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+Δz) ) dζ
f(z+h)-f(z)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+h) )-f(ζ)/((ζ-z) ) dζ
=1/( 2πi) ?_Cf(ζ)((ζ-z)-(ζ-z-h))/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)(ζ-z-ζ+z+h)/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)h/(ζ-z-h)(ζ-z)dζ
=h/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
( f(z+h)-f(z))/h=1/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
 h→0
f'(z)= f^((1)) (z)=1/2πi ?_C(f(ζ))/(ζ-z)^2dζ
?A)n=k(k=1,2,3,…)のとき
f^((k)) (z)=k!/2πi ?_C(f(ζ))/(ζ-z)^(k+1)dζ ⇒f^((k+1)) (z)=(k+1)!/( 2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ
f^((k)(z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_Cf(ζ)/(ζ-(z+h))^(k+1) -f(ζ)/(ζ-z)^(k+1)dζ
=k!/( 2πih) ?_C((ζ-z)^(k+1)-(ζ-z-h)^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ??※
(a+b)^(k+1)
=(_k+1^ )C_0 a^n b^0+(_k+1^ )C_1 a^(k+1-1) b^1+(_k+1^ )C_2 a^(k+1-2) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+?+b^(k+1)
=a^(k+1)+(k+1) a^k b+(_k+1^ )C_2 a^(k-1) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+? +b^(k+1)
(ζ-z-h)^(k+1)
=(ζ-z)^(k+1)-(k+1) (ζ-z)^k h + (_k+1^ )C_2 (ζ-z)^(k-1) h^2-?+h^(k+1)
(ζ-z)^(k+1)-(ζ-z-h)^(k+1)
=(k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1)
( f^((k) ) (z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_C((k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
=(k+1)!/( 2πi) ?_Cf(ζ)/((ζ-z-h)^(k+1) (ζ-z) ) dζ-k!/( 2πi) ?_C((_k+1^ )C_2 (ζ-z)^(k-1) h-?+h^k)/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
 h→0
f^((k+1)) (z)
784: 09/03(水)02:02 ID:cpr6IQHh(1/5) AAS
C:x=x(t),y=y(t)
OP↑=r(t)=(x(t),y(t))
OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt))
Δs=|Δr|=|Δr(t+Δt)-r(t)|
RΔθ≒Δs,1/R=Δθ/Δs
1/R=lim[Δt→0](Δθ/Δs)=dθ/ds
dr/dt=rDt
r Dt=(x Dt,y Dt)
r ?(t+Δt)=(x ?(t+Δt),y ?(t+Δt))
r Dt=r ?=(x ?,y ?)
r ?(t+Δt)= r ?_Q=(x ?_Q,y ?_Q)
Δr ? ?Δr ?_Q ΔsinΔθ=det(r ?,r ?_Q)
ΔθΔsinΔθ=(det(r ?,r ?_Q))/Δr ? ?Δr ?_Q ?
785: 09/03(水)02:02 ID:cpr6IQHh(2/5) AAS
y''(t) - 3y'(t) + 2y(t) = e^(-t) ・・・・・・・?(初期条件)y(0) = 1/6, y'(0) = 5/6
L[y''(t)] = s^2Y(s) - sy(0) - y'(0) = s^2Y(s) - s/6 - 5/6
L[3y'(t)] = 3( sY(s) - y(0) ) = 3sY(s) - 1/2
L[2y(t)] = 2Y(s)
L[e^(-t)] = 1/(s + 1)

s^2Y(s) - s/6 - 5/6 - (3sY(s) -1/2) + 2Y(s) = 1/(s+1)
Y(s)(s^2 - 3s + 2) - s/6 -1/3 = 1/(s+1)
Y(s)(s-1)(s-2) = s/6+1/3+1/(s+1) = (s(s+1)+2(s+1)+6)/6(s+1) = (s^2 + 3s + 8)/6(s+1)
Y(s) = (s^2 + 3s + 8)/6(s+1)(s-1)(s-2) = A/(s+1) + B/(s-1) + C/(s-2)
s^2 + 3s + 8 = 6( A(s-1)(s-2) + B(s+1)(s-2) + C(s+1)(s-1) )
s = -1 のとき 1 - 3 + 8 = 6A(-2)(-3) 36A = 6 A = 1/6
s = 1 のとき 1 + 3 + 8 = 6B(2)(-1) -12B = 12 B = -1
s = 2 のとき 4 + 6 + 8 = 6C(3)(1) 18C = 18 C = 1

Y(s) = 1/6(s+1) - 1/(s-1) + 1/(s-2)
y(t) = -e^t + e^(2t) + (1/6)e^(-t)
786: 09/03(水)02:03 ID:cpr6IQHh(3/5) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
787: 09/03(水)08:20 ID:cpr6IQHh(4/5) AAS
y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1)
y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1)
=(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) )
=- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x)

y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x)
=C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x)
=(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
y_s=1/2cos(x)
y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x)
=C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x)
=(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
788: 09/03(水)08:20 ID:cpr6IQHh(5/5) AAS
k^2 -3k + 2 = (k-1)(k-2) = 0 k = 1, 2
なので
y''(t) - 3'y(t) + 2y(t) = 0
の一般解 y0 は
y0 = C1e^t + C2e^(2t)
 ?の特殊解をv(t)とすると
v(t) = 1/(D-1)(D-2)*e^(-t)
= 1/(D-2)*e^(-t) - 1/(D-1)*e^(-t)
= (-1/3)e^(-t) + (1/2)e^(-t) = (1/6)e^(-t)
 よって?の一般解は
y(t) = C1e^t + C2e^(2t) + (1/6)e^(-t)
y(0) = C1 + C2 + 1/6 = 1/6
C1 + C2 = 0 …… ?
y'(t) = C1e^t + C2*2e^(2t) - (1/6)e^(-t)
y'(0) = C1 + C2*2 - 1/6 = 5/6
C1+ 2C2 = 1……?
 ??より
C1 = -1, C2= 1
 初期値を満たす特殊解を改めて y とおくと
y(t) = -e^t +e^(2t) + (1/6)e^(-t)
789: 09/04(木)13:15 ID:bNaeXkef(1/2) AAS
F(ω)=∫[-∞→∞]f(t)e^(-jωt)dt
f(t)= F^(-1) [F(ω)]=1/2π ∫[-∞→∞]F(ω) e^jωt ? dω
g(t)={(0(t<0):f(t)e^(-σt)t≧0)
G(ω)=∫[-∞→∞]g(t)e^(-jωt)dt
=∫[0→∞]g(t)e^(-jωt)dt
=∫[0→∞]f(t)e^(-σt)e^(-jωt)dt
=∫[0→∞]f(t)e^(-(σ+jω)t)dt
s=σ+jω
F(s)=∫[0→∞]f(t)e^(-st)dt
s=σ+jω  ds=jdω  ω: -∞ → ∞
s:σ-j∞→σ+j∞
g(t)=(1/2π)[-∞→∞]F(s)e^jωtdω
=(1/2πj)∫[σ-j∞→σ+j∞]F(s)e^jωtds
f(t)e^(-σt)=f(t)/e^σt
=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^jωtds
f(t)=(1/2πj)∫[σ-j∞→σ+j∞]F(s)e^σt e^jωtds
=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^(σ+jω)tds
f(t)=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^stds
790: 09/04(木)13:15 ID:bNaeXkef(2/2) AAS
k^2 -3k + 2 = (k-1)(k-2) = 0 k = 1, 2
なので
y''(t) - 3'y(t) + 2y(t) = 0
の一般解 y0 は
y0 = C1e^t + C2e^(2t)
 ?の特殊解をv(t)とすると
v(t) = 1/(D-1)(D-2)*e^(-t)
= 1/(D-2)*e^(-t) - 1/(D-1)*e^(-t)
= (-1/3)e^(-t) + (1/2)e^(-t) = (1/6)e^(-t)
 よって?の一般解は
y(t) = C1e^t + C2e^(2t) + (1/6)e^(-t)
y(0) = C1 + C2 + 1/6 = 1/6
C1 + C2 = 0 …… ?
y'(t) = C1e^t + C2*2e^(2t) - (1/6)e^(-t)
y'(0) = C1 + C2*2 - 1/6 = 5/6
C1+ 2C2 = 1……?
 ??より
C1 = -1, C2= 1
 初期値を満たす特殊解を改めて y とおくと
y(t) = -e^t +e^(2t) + (1/6)e^(-t)
791: 09/05(金)06:57 ID:LzhfrUBy(1) AAS
f(θ)=a_0/2+納k=1→∞](a_k cos(kθ)+b_k sin(kθ))
a_k=1/π ∫[-π→π]f(θ)cos(kθ)dθ)
b_k=1/π ∫[-π→π]f(θ)sin(kθ)dθ

e^jθ =cosθ+jsinθ
e^(-jθ)=cosθ-jsinθ
cosθ=(e^jθ+e^(-jθ))/2. sinθ=(e^jθ-e^(-jθ))/2j.
f(θ)=a_0/2+納k=1→∞](a_k (e^jkθ+e^(-jkθ))/2+b_k (e^jkθ-e^(-jkθ))/2j)
=a_0/2+納k=1→∞](a_k(e^jkθ+e^(-jkθ))/2+?jb?_k (e^(-jkθ)-e^jkθ)/2)
=a_0/2+納k=1→∞]((a_k-jb_k)/2 e^jkθ) +納k=1→∞]((a_k+jb_k)/2 e^(-jkθ) )
a_(-k)=(1/π)∫[-π→π]f(θ)cos(-kθ)dθ)
=(1/π)∫[-π→π]f(θ)cos(kθ)dθ)=a_k
b_(-k)=(1/π)∫[-π→π]f(θ)sin(-kθ)dθ
= -1/π ∫[-π→π]f(θ)sin(kθ)dθ= -b_k
f(θ)
=納k=1→∞]((a_k+jb_k)/2 e^(-jkθ) ) +a_0/2+納k=1→∞]((a_k-jb_k)/2 e^jkθ )
=(a_2+jb_2)/2 e^(-j2θ)+(a_1+jb_1)/2 e^(-j1θ)+a_0/2+(a_1-jb_1)/2 e^j1θ+(a_2-jb_2)/2e^j2θ+?
=(a_(-2)-jb_(-2))/2 e^j2θ+(a_(-1)-jb_(-1))/2 e^j1θ+a_0/2+(a_1-jb_1)/2 e^j1θ+(a_2-jb_2)/2 e^j2θ+?
=農(k=-∞)^∞?((a_k-jb_k)/2 e^jkθ )
c_k=(a_k-jb_k)/2
f(θ)=納k=-∞→∞]c_k e^jkθ
c_k=(a_k-jb_k)/2
=(1/2π)∫[-π→π]f(θ)cos(kθ)dθ-(j/2π)∫[-π→π]f(θ)sin(kθ)dθ
=(1/2π)∫[-π→π]f(θ)(cos(kθ)-jsin(kθ))dθ
=(1/2π)∫[-π→π]f(θ)(cos(-kθ)+jsin(-kθ))dθ
=(1/2π)∫[-π→π]f(θ)(cos(-kθ)+jsin(-kθ))dθ
=(1/2π)∫[-π→π]f(θ)e^(-jkθ)dθ
792: 09/06(土)06:14 ID:RyEx2SCq(1/3) AAS
C:x=x(t),y=y(t)
OP↑=r(t)=(x(t),y(t))
OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt))
Δs=|Δr|=|Δr(t+Δt)-r(t)|
RΔθ≒Δs,1/R=Δθ/Δs
1/R=lim[Δt→0](Δθ/Δs)=dθ/ds
dr/dt=rDt
r Dt=(x Dt,y Dt)
r ?(t+Δt)=(x ?(t+Δt),y ?(t+Δt))
r Dt=r ?=(x ?,y ?)
r ?(t+Δt)= r ?_Q=(x ?_Q,y ?_Q)
Δr ? ?Δr ?_Q ΔsinΔθ=det(r ?,r ?_Q)
ΔθΔsinΔθ=(det(r ?,r ?_Q))/Δr ? ?Δr ?_Q ?
793: 09/06(土)06:15 ID:RyEx2SCq(2/3) AAS
k^2 -3k + 2 = (k-1)(k-2) = 0 k = 1, 2
y''(t) - 3'y(t) + 2y(t) = 0
y0 = C1e^t + C2e^(2t)
v(t) = 1/(D-1)(D-2)*e^(-t)
= 1/(D-2)*e^(-t) - 1/(D-1)*e^(-t)
= (-1/3)e^(-t) + (1/2)e^(-t) = (1/6)e^(-t)
y(t) = C1e^t + C2e^(2t) + (1/6)e^(-t)
y(0) = C1 + C2 + 1/6 = 1/6
C1 + C2 = 0 …… ?
y'(t) = C1e^t + C2*2e^(2t) - (1/6)e^(-t)
y'(0) = C1 + C2*2 - 1/6 = 5/6
C1+ 2C2 = 1……?
 ??より
C1 = -1, C2= 1
y(t) = -e^t +e^(2t) + (1/6)e^(-t)
794: 09/06(土)06:16 ID:RyEx2SCq(3/3) AAS
(1/2)B(1/2+1/(2n), 1/2-1/(2n))
= (1/2)Γ( 1/2+1/(2n) )Γ( 1/2-1/(2n) ) /Γ( 1/2+1/(2n) + 1/2-1/(2n) )
= (1/2)Γ(z)Γ(1-z) /Γ(1)
= (1/2) ( π/sin(πz) ) / 0!
= π/( 2sin(πz) )
= π/( 2sin(π/2+π/(2n)) )
= π/( 2cos(π/(2n)) )
795: 09/07(日)11:01 ID:g2aKRGvd(1/4) AAS
y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1)
y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1)
=(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) )
=- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x)

y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x)
=C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x)
=(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
y_s=1/2cos(x)
y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x)
=C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x)
=(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
796: 09/07(日)11:01 ID:g2aKRGvd(2/4) AAS
D^2+1)y=1/(?cos?^3 (x) )
(D^2+1)y=0
λ^2+1=0 λ=0±i
y_0=e^(-0) (C_1 cos(x)+C_2 sin(x))=C_1 cos(x)+C_2 sin(x)

cos(x)=((e^ix+e^(-ix))/2)
1/(cos^3(x))=(2/(e^ix+e^(-ix) ))^3=8/(e^ix+e^(-ix) )^3

(D^2+1) y_s=8/(e^ix+e^(-ix) )^3
(D+i)(D-i) y_s=8/(e^ix+e^(-ix) )^3
y_s=(1/(D+i))(1/(D-i)) 8/(e^ix+e^(-ix) )^3
1/(D-i) 8/(e^ix+e^(-ix) )^3 =8e^ix 1/D e^(-ix) 1/(e^ix+e^(-ix) )^3
=8e^ix ∫e^(-ix)/(e^ix+e^(-ix) )^3 dx
e^(-ix)/(e^ix+e^(-ix) )^3 =(e^3ix e^(-ix))/(e^3ix (e^ix+e^(-ix) )^3 )=e^2ix/((e^ix )^3 (e^ix+e^(-ix) )^3 )
=e^2ix/(e^ix (e^ix+e^(-ix) ))^3 =e^2ix/(e^2ix+1)^3
∴1/(D-i) 8/(e^ix+e^(-ix) )^3 =8e^ix ∫e^(-2ix)/(e^2ix+1)^3 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫(8e^2ix)/(e^2ix+1)^3 dx=∫(8e^2ix)/t^3 dt/(2ie^2ix )=∫4/t^3 dt/i
=-∫4i/t^3 dt=-4i∫t^(-3) dt =-4i ?-t?^(-2)/2=2it^(-2)
=2i/(e^2ix+1)^2
797: 09/07(日)11:02 ID:g2aKRGvd(3/4) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
∫_0^(π/2)?(tan(x))^(1/n) dx=∫_0^(π/2)?( (sin(x))^(1/n))/( (cos(x))^(1/n) ) dx=∫_0^(π/2)?( t^(1/2n))/(1-t)^(1/2n) (t^(-1/2) (1-t)^(1/2))/2 dt

=1/2 ∫_0^(π/2)???t^(1/2n) (1-t)^(-1/2n) t?^(-1/2) (1-t)^(-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2n-1/2) (1-t)^(-1/2n-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
(1/2) B(1/2+1/(2n), 1/2-1/(2n))
= (1/2) Γ( 1/2+1/(2n) ) Γ( 1/2-1/(2n) ) / Γ( 1/2+1/(2n) + 1/2-1/(2n) )
= (1/2) Γ(z) Γ(1-z) / Γ(1)
= (1/2) ( π/sin(πz) ) / 0!
= π/( 2 sin(πz) )
= π/( 2 sin(π/2+π/(2n)) )
= π/( 2 cos(π/(2n)) ).
798: 09/07(日)23:57 ID:g2aKRGvd(4/4) AAS
  r↑(θ,φ) = ( asinθcosφ, asinθsinφ, acosθ )
  ∂r↑/∂θ↑= ( acosθcosφ, acosθsinφ, -asinθ ).
  ∂r↑/∂φ↑= ( -asinθsinφ, asinθcosφ, 0 ).
  ∂r↑ ∂r↑
  ──×──
  ∂θ ∂φ
 = ( |acosθsinφ -asinθ| |-asinθ acosθcosφ| | acosθcosφ, acosθsinφ|
   |asinθcosφ   0  |, |  0  -asinθsinφ|, |-asinθsinφ, asinθcosφ | )
 = ( a^2sin^2θcosφ, a^2sin^2θsinφ, a^2cos^2φsinθcosθ+ a^2sin^2φsinθcosθ )
 = ( a^2sin^2θcosφ, a^2sin^2θsinφ, a^2sinθcosθ ).
  |∂r↑ ∂r↑| 
  |──×── | = √( a^4sin^4θcos^2φ + a^4sin^4θsin^2φ+ a^4sin^2θcos^2θ)
  |∂θ ∂φ | 
          = √( a^4sin^4θ + a^4sin^2θcos^2θ)
          = √( a^4sin^2θ(sin^θ + cos^2θ) )
          = √( a^4sin^2θ) = a^2sinθ.
  ∬_S 1 dS
     |∂r↑ ∂r↑|
 = ∬_D |──×── |dθdφ
     |∂θ ∂φ |
 = a^2∬[D] sinθdθdφ
 = a^2∫[0,2π]dφ∫[0,π]sinθdθ
 = 4πa^2
799: 与作 09/08(月)22:09 ID:1B9Yc7R5(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
800: 与作 09/08(月)22:10 ID:1B9Yc7R5(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
801: 与作 09/08(月)22:12 ID:1B9Yc7R5(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
802: 09/09(火)05:20 ID:e/ezkyR1(1/6) AAS
y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1)
y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1)
=(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) )
=- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x)

y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x)
=C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x)
=(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
y_s=1/2cos(x)
y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x)
=C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x)
=(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
803: 09/09(火)05:21 ID:e/ezkyR1(2/6) AAS
C:x=x(t),y=y(t)
OP↑=r(t)=(x(t),y(t))
OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt))
Δs=|Δr|=|Δr(t+Δt)-r(t)|
RΔθ≒Δs,1/R=Δθ/Δs
1/R=lim[Δt→0](Δθ/Δs)=dθ/ds
dr/dt=rDt
r Dt=(x Dt,y Dt)
r ?(t+Δt)=(x ?(t+Δt),y ?(t+Δt))
r Dt=r ?=(x ?,y ?)
r ?(t+Δt)= r ?_Q=(x ?_Q,y ?_Q)
Δr ? ?Δr ?_Q ΔsinΔθ=det(r ?,r ?_Q)
ΔθΔsinΔθ=(det(r ?,r ?_Q))/Δr ? ?Δr ?_Q ?
804: 09/09(火)05:22 ID:e/ezkyR1(3/6) AAS
y''+y=sin(2x)
λ^2+1=0 λ=0±i
y_0=C_1 cos(x)+C_2 sin(x)
y_1=cos(x), y_2=sin(x)
?y_1?^'=-sin(x), ?y_2?^'=cos(x)
W=|?( cos(x)@-sin(x) )?( sin(x) @ cos(x) )|
=?cos?^2 (x)+?sin?^2 (x)=1
y_s (x)=-y_1 ∫?(y_2 R(x))/W dx+y_2 ∫?(y_1 R(x))/W dx
=-cos(x) ∫?sin(x)sin(2x) dx+sin(x) ∫?cos(x)sin(2x) dx
∫?sin(2x)sin(x) dx=-1/2 ∫??cos(2x+x)-cos(2x-x) ? dx
=-1/2 ∫??cos(3x)-cos(x) ? dx=-1/2?1/3 sin(3x)+1/2 sin(x)
=-1/6 sin(3x)+1/2 sin(x)
∫?sin(2x)cos(x) dx=1/2 ∫??sin(2x+x)+sin(2x-x) ? dx
=1/2 ∫??sin(3x)+sin(x) ? dx=1/2?(-1)/3 cos(3x)+(-1)/2 cos(x)
=-1/6 cos(3x)-1/2 cos(x)
y_s (x)
=-cos(x)(-1/6 sin(3x)+1/2 sin(x))+sin(x)(-1/6 cos(3x)-1/2 cos(x))
=1/6 sin(3x)cos(x)-1/2 sin(x)cos(x)-1/6 cos(3x)sin(x)-1/2 sin(x)cos(x)
=1/6 sin(3x-x)-sin(x)cos(x)=1/6 sin(2x)-1/2 sin(2x)
=-1/3 sin(2x)
∴y=C_1 cos(x)+C_2 sin(x)-1/3 sin(2x)
805: 与作 09/09(火)10:00 ID:O1cy+QbR(1/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
806: 与作 09/09(火)10:01 ID:O1cy+QbR(2/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
807: 与作 09/09(火)10:01 ID:O1cy+QbR(3/6) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
808: 09/09(火)14:24 ID:e/ezkyR1(4/6) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
∫_0^(π/2)?(tan(x))^(1/n) dx=∫_0^(π/2)?( (sin(x))^(1/n))/( (cos(x))^(1/n) ) dx=∫_0^(π/2)?( t^(1/2n))/(1-t)^(1/2n) (t^(-1/2) (1-t)^(1/2))/2 dt

=1/2 ∫_0^(π/2)???t^(1/2n) (1-t)^(-1/2n) t?^(-1/2) (1-t)^(-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2n-1/2) (1-t)^(-1/2n-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
(1/2) B(1/2+1/(2n), 1/2-1/(2n))
= (1/2) Γ( 1/2+1/(2n) ) Γ( 1/2-1/(2n) ) / Γ( 1/2+1/(2n) + 1/2-1/(2n) )
= (1/2) Γ(z) Γ(1-z) / Γ(1)
= (1/2) ( π/sin(πz) ) / 0!
= π/( 2 sin(πz) )
= π/( 2 sin(π/2+π/(2n)) )
= π/( 2 cos(π/(2n)) ).
809: 09/09(火)14:24 ID:e/ezkyR1(5/6) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
810: 09/09(火)14:25 ID:e/ezkyR1(6/6) AAS
f(z)=1/(1-z) z=i で展開
?@) |z-i|<√2
(1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i)
1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i))
=1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?)
=(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +?
=((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +?
=納n=0→∞]((1+i)/2)^(n+1) (z-i)^n
※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2

?A) |z-i|>√2の場合
|z-i|/√2=|(z-i)/(1-i)|>1
すなわち、0<|(1-i)/(z-i)|<1となるから((1-i)/(z-i))^n の級数展開を考える。
1/(1-z)=1/(1-i-(z-i) )=-1/(z-i)?1/(1-(1-i)/(z-i))
=-1/(z-i) (1+((1-i)/(z-i))+((1-i)/(z-i))^2+((1-i)/(z-i))^3+?)
=-(1/(z-i)+(1-i)/(z-i)^2 +(1-i)^2/(z-i)^3 +?)
=-(1/(z-i)+2/(1+i)(z-i)^2 +2^2/?(1+i)^2 (z-i)?^3 +?)
=-((2^0 (z-i)^(-1))/(1+i)^0 +(2^1 (z-i)^(-2))/(1+i)^1 +(2^2 (z-i)^(-3))/(1+i)^2 +?)
=-(?(1+i)^0 (z-i)?^(-1)/2^0 +?(1+i)^(-1) (z-i)?^(-2)/2^(-1) +((1+i)^(-2) (z-i)^(-3))/2^(-2) +?)
=-納n=1→∞]((1+i)/2)^(1-n) (z-i)^(-n)
※(1-i)^2=(1-i)(1-i)=(1-i)(1+i)/(1+i)?(1-i)(1+i)/(1+i)=2^2/(1+i)^2
(1-i)^n=2^n/(1+i)^n
811: 与作 09/09(火)20:53 ID:O1cy+QbR(4/6) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
812: 与作 09/09(火)20:54 ID:O1cy+QbR(5/6) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
813: 与作 09/09(火)20:54 ID:O1cy+QbR(6/6) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
814: 09/10(水)03:24 ID:wdfOyVp6(1/3) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
∫_0^(π/2)?(tan(x))^(1/n) dx=∫_0^(π/2)?( (sin(x))^(1/n))/( (cos(x))^(1/n) ) dx=∫_0^(π/2)?( t^(1/2n))/(1-t)^(1/2n) (t^(-1/2) (1-t)^(1/2))/2 dt

=1/2 ∫_0^(π/2)???t^(1/2n) (1-t)^(-1/2n) t?^(-1/2) (1-t)^(-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2n-1/2) (1-t)^(-1/2n-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
(1/2) B(1/2+1/(2n), 1/2-1/(2n))
= (1/2) Γ( 1/2+1/(2n) ) Γ( 1/2-1/(2n) ) / Γ( 1/2+1/(2n) + 1/2-1/(2n) )
= (1/2) Γ(z) Γ(1-z) / Γ(1)
= (1/2) ( π/sin(πz) ) / 0!
= π/( 2 sin(πz) )
= π/( 2 sin(π/2+π/(2n)) )
= π/( 2 cos(π/(2n)) ).
815: 09/10(水)03:24 ID:wdfOyVp6(2/3) AAS
Δr↑=r↑(t+Δt)-r(t). |r↑|=Δs≒RΔθ.
R≒Δs/Δθ, Δx→0⇒Δs→0
1/R=lim[Δx→0])Δθ/Δs=dθ/ds
Δs=√((Δx)^2+(Δy)^2)=√((Δx)^2+(Δy)^2)/(Δx)^2 (Δx)^2 )=√(1+(Δy/Δx)^2 ) Δx
tan(Δθ)= tan(β-θ)=(tanβ-tanθ)/(1+tanβtanθ)=(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
Δθ≠tan(Δθ)=(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
Δθ/Δs=((y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x)))/(√(1+(Δy/Δx)^2 )Δx)
=1/√(1+(Δy/Δx)^2 )?1/Δx?(y'(x+Δx)-y'(x))/(1+y'(x+Δx)y'(x))
=1/√(1+(Δy/Δx)^2 )?(y'(x+Δx)-y'(x))/Δx?1/(1+y'(x+Δx)y'(x))
1/R=dθ/ds=(lim)[Δx→0]Δθ/Δs
=1/√(1+(dy/dx)^2 )(d^2 y)/(dx^2 )1/(1+(dy/dx)^2 )
=((d^2 y)/(dx^2 ))/(1+(dy/dx)^2 )^(3/2)
816: 09/10(水)03:26 ID:wdfOyVp6(3/3) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
817: 与作 09/10(水)11:16 ID:XQu2YOzJ(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
818: 与作 09/10(水)11:17 ID:XQu2YOzJ(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
819: 与作 09/10(水)11:17 ID:XQu2YOzJ(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
820: 09/11(木)11:03 ID:1+24hxo2(1/3) AAS
f^((k) ) (z)=(n!/2πi)?_Cf(ζ)/(ζ-z)^(k+1)dζ
?@)n=1のとき
f(z)=1/( 2πi) ?_Cf(ζ)/((ζ-z) ) dζ
f(z+h)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+Δz) ) dζ
f(z+h)-f(z)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+h) )-f(ζ)/((ζ-z) ) dζ
=1/( 2πi) ?_Cf(ζ)((ζ-z)-(ζ-z-h))/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)(ζ-z-ζ+z+h)/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)h/(ζ-z-h)(ζ-z)dζ
=h/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
( f(z+h)-f(z))/h=1/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
 h→0
f'(z)= f^((1)) (z)=1/2πi ?_C(f(ζ))/(ζ-z)^2dζ
?A)n=k(k=1,2,3,…)のとき
f^((k)) (z)=k!/2πi ?_C(f(ζ))/(ζ-z)^(k+1)dζ ⇒f^((k+1)) (z)=(k+1)!/( 2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ
f^((k)(z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_Cf(ζ)/(ζ-(z+h))^(k+1) -f(ζ)/(ζ-z)^(k+1)dζ
=k!/( 2πih) ?_C((ζ-z)^(k+1)-(ζ-z-h)^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ??※
(a+b)^(k+1)
=(_k+1^ )C_0 a^n b^0+(_k+1^ )C_1 a^(k+1-1) b^1+(_k+1^ )C_2 a^(k+1-2) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+?+b^(k+1)
=a^(k+1)+(k+1) a^k b+(_k+1^ )C_2 a^(k-1) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+? +b^(k+1)
(ζ-z-h)^(k+1)
=(ζ-z)^(k+1)-(k+1) (ζ-z)^k h + (_k+1^ )C_2 (ζ-z)^(k-1) h^2-?+h^(k+1)
(ζ-z)^(k+1)-(ζ-z-h)^(k+1)
=(k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1)
( f^((k) ) (z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_C((k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
=(k+1)!/( 2πi) ?_Cf(ζ)/((ζ-z-h)^(k+1) (ζ-z) ) dζ-k!/( 2πi) ?_C((_k+1^ )C_2 (ζ-z)^(k-1) h-?+h^k)/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
 h→0
f^((k+1)) (z)=(k+1)!/(2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ
821: 09/11(木)11:05 ID:1+24hxo2(2/3) AAS
y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1)
y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1)
=(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) )
=- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x)

y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x)
=C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x)
=(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
y_s=1/2cos(x)
y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x)
=C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x)
=(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
822: 09/11(木)11:06 ID:1+24hxo2(3/3) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
823: 与作 09/11(木)15:13 ID:kW0lw9Za(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
824: 与作 09/11(木)15:13 ID:kW0lw9Za(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
825: 与作 09/11(木)15:14 ID:kW0lw9Za(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
826: 09/12(金)08:29 ID:hW3FzIQW(1/3) AAS
F(ω)=∫[-∞→∞]f(t)e^(-jωt)dt
f(t)= F^(-1) [F(ω)]=1/2π ∫[-∞→∞]F(ω) e^jωt ? dω
g(t)={(0(t<0):f(t)e^(-σt)t≧0)
G(ω)=∫[-∞→∞]g(t)e^(-jωt)dt
=∫[0→∞]g(t)e^(-jωt)dt
=∫[0→∞]f(t)e^(-σt)e^(-jωt)dt
=∫[0→∞]f(t)e^(-(σ+jω)t)dt
s=σ+jω
F(s)=∫[0→∞]f(t)e^(-st)dt
s=σ+jω  ds=jdω  ω: -∞ → ∞
s:σ-j∞→σ+j∞
g(t)=(1/2π)[-∞→∞]F(s)e^jωtdω
=(1/2πj)∫[σ-j∞→σ+j∞]F(s)e^jωtds
f(t)e^(-σt)=f(t)/e^σt
=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^jωtds
f(t)=(1/2πj)∫[σ-j∞→σ+j∞]F(s)e^σt e^jωtds
=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^(σ+jω)tds
f(t)=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^stds
827: 09/12(金)08:29 ID:hW3FzIQW(2/3) AAS
f(θ)=a_0/2+納k=1→∞](a_k cos(kθ)+b_k sin(kθ))
a_k=1/π ∫[-π→π]f(θ)cos(kθ)dθ)
b_k=1/π ∫[-π→π]f(θ)sin(kθ)dθ

e^jθ =cosθ+jsinθ
e^(-jθ)=cosθ-jsinθ
cosθ=(e^jθ+e^(-jθ))/2. sinθ=(e^jθ-e^(-jθ))/2j.
f(θ)=a_0/2+納k=1→∞](a_k (e^jkθ+e^(-jkθ))/2+b_k (e^jkθ-e^(-jkθ))/2j)
=a_0/2+納k=1→∞](a_k(e^jkθ+e^(-jkθ))/2+?jb?_k (e^(-jkθ)-e^jkθ)/2)
=a_0/2+納k=1→∞]((a_k-jb_k)/2 e^jkθ) +納k=1→∞]((a_k+jb_k)/2 e^(-jkθ) )
a_(-k)=(1/π)∫[-π→π]f(θ)cos(-kθ)dθ)
=(1/π)∫[-π→π]f(θ)cos(kθ)dθ)=a_k
b_(-k)=(1/π)∫[-π→π]f(θ)sin(-kθ)dθ
= -1/π ∫[-π→π]f(θ)sin(kθ)dθ= -b_k
f(θ)
=納k=1→∞]((a_k+jb_k)/2 e^(-jkθ) ) +a_0/2+納k=1→∞]((a_k-jb_k)/2 e^jkθ )
=(a_2+jb_2)/2 e^(-j2θ)+(a_1+jb_1)/2 e^(-j1θ)+a_0/2+(a_1-jb_1)/2 e^j1θ+(a_2-jb_2)/2e^j2θ+?
=(a_(-2)-jb_(-2))/2 e^j2θ+(a_(-1)-jb_(-1))/2 e^j1θ+a_0/2+(a_1-jb_1)/2 e^j1θ+(a_2-jb_2)/2 e^j2θ+?
=農(k=-∞)^∞?((a_k-jb_k)/2 e^jkθ )
c_k=(a_k-jb_k)/2
f(θ)=納k=-∞→∞]c_k e^jkθ
c_k=(a_k-jb_k)/2
=(1/2π)∫[-π→π]f(θ)cos(kθ)dθ-(j/2π)∫[-π→π]f(θ)sin(kθ)dθ
=(1/2π)∫[-π→π]f(θ)(cos(kθ)-jsin(kθ))dθ
=(1/2π)∫[-π→π]f(θ)(cos(-kθ)+jsin(-kθ))dθ
=(1/2π)∫[-π→π]f(θ)(cos(-kθ)+jsin(-kθ))dθ
=(1/2π)∫[-π→π]f(θ)e^(-jkθ)dθ
828: 09/12(金)08:30 ID:hW3FzIQW(3/3) AAS
C:x=x(t),y=y(t)
OP↑=r(t)=(x(t),y(t))
OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt))
Δs=|Δr|=|Δr(t+Δt)-r(t)|
RΔθ≒Δs,1/R=Δθ/Δs
1/R=lim[Δt→0](Δθ/Δs)=dθ/ds
dr/dt=rDt
r Dt=(x Dt,y Dt)
r ?(t+Δt)=(x ?(t+Δt),y ?(t+Δt))
r Dt=r ?=(x ?,y ?)
r ?(t+Δt)= r ?_Q=(x ?_Q,y ?_Q)
Δr ? ?Δr ?_Q ΔsinΔθ=det(r ?,r ?_Q)
ΔθΔsinΔθ=(det(r ?,r ?_Q))/Δr ? ?Δr ?_Q ?
829: 与作 09/12(金)09:12 ID:H19M0cZI(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
830: 与作 09/12(金)09:13 ID:H19M0cZI(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
831: 与作 09/12(金)09:14 ID:H19M0cZI(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
832: 09/13(土)11:15 ID:tt8WnsBt(1/3) AAS
B(p,q)=∫_0^1?x^(p-1) (1-x)^(q-1) dx
B(p,q)=∫[0→π/2](sinθ)^(2p-1)(cosθ)^(2q-1)dθ
x=sin^2θ?=(sinθ)?^2 dx=2sinθcosθdθ
x:0→1 θ:0→π/2
B(p,q)=∫[0→1]x^(p-1)(1-x)^(q-1) dx
=∫[0→π/2](sin^2θ)^(p-1)(1-sin^2θ)^(q-1) ? 2sinθcosθdθ
=2∫[0→π/2](sinθ)^(2p-2) sinθ(cosθ)^(2q-2) cosθ? dθ
=2∫[0→π/2](sinθ)^(2p-1)(cosθ)^(2q-1)dθ
∫[0→π/2]tanθ)^(1/n)dθ
t=sin^2θ=(sinθ)^2
sin^2θ=1-cos^2θ
cos^2θ=1-t
dt=2sinθcosθdθ=2√t √(1-t) dθ
dθ=dt/(2√t √(1-t))=(t^(-1/2)(1-t)^(1/2))/2 dt
(sinθ)^(1/n)=(√t)^(1/n)=t^(1/2n)
(cosθ)^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
∫[0→π/2]tanθ)^(1/n)dx
=∫[0→π/2] (sinθ)^(1/n))/( (cosθ)^(1/n) ) dθ
=∫[0→π/2] t^(1/2n))/(1-t)^(1/2n)
(t^(-1/2)(1-t)^(1/2))/2 dt
=(1/2)∫[0→π/2]?t^(1/2n)(1-t)^(-1/2n) t?^(-1/2)(1-t)^(-1/2)dt
=(1/2)∫[0→π/2]t^(1/2n-1/2)(1-t)^(-1/2n-1/2)dt
=(1/2)∫[0→π/2]t^(1/2+1/2n-1)(1-t)^(1/2-1/2n-1)dt
=(1/2)∫[0→π/2]t^(1/2+1/2n-1)(1-t)^(1/2-1/2n-1)dt
=(1/2)B(1/2+1/2n,1/2-1/2n)
B(p,q)=∫[0→π/2](sinθ)^(2p-1)(cosθ)^(2q-1)dθ
(1/2)∫[0→π/2]t^(1/2+1/2n-1)(1-t)^(1/2-1/2n-1)dt
=∫[0→π/2](sinθ)^(2p-1)(cosθ)^(2q-1)dθ
833: 09/13(土)11:16 ID:tt8WnsBt(2/3) AAS
y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1)
y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1)
=(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) )
=- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x)

y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x)
=C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x)
=(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
y_s=1/2cos(x)
y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x)
=C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x)
=(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
834: 09/13(土)11:17 ID:tt8WnsBt(3/3) AAS
f^((k) ) (z)=(n!/2πi)?_Cf(ζ)/(ζ-z)^(k+1)dζ
?@)n=1のとき
f(z)=1/( 2πi) ?_Cf(ζ)/((ζ-z) ) dζ
f(z+h)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+Δz) ) dζ
f(z+h)-f(z)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+h) )-f(ζ)/((ζ-z) ) dζ
=1/( 2πi) ?_Cf(ζ)((ζ-z)-(ζ-z-h))/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)(ζ-z-ζ+z+h)/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)h/(ζ-z-h)(ζ-z)dζ
=h/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
( f(z+h)-f(z))/h=1/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
 h→0
f'(z)= f^((1)) (z)=1/2πi ?_C(f(ζ))/(ζ-z)^2dζ
?A)n=k(k=1,2,3,…)のとき
f^((k)) (z)=k!/2πi ?_C(f(ζ))/(ζ-z)^(k+1)dζ ⇒f^((k+1)) (z)=(k+1)!/( 2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ
f^((k)(z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_Cf(ζ)/(ζ-(z+h))^(k+1) -f(ζ)/(ζ-z)^(k+1)dζ
=k!/( 2πih) ?_C((ζ-z)^(k+1)-(ζ-z-h)^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ??※
(a+b)^(k+1)
=(_k+1^ )C_0 a^n b^0+(_k+1^ )C_1 a^(k+1-1) b^1+(_k+1^ )C_2 a^(k+1-2) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+?+b^(k+1)
=a^(k+1)+(k+1) a^k b+(_k+1^ )C_2 a^(k-1) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+? +b^(k+1)
(ζ-z-h)^(k+1)
=(ζ-z)^(k+1)-(k+1) (ζ-z)^k h + (_k+1^ )C_2 (ζ-z)^(k-1) h^2-?+h^(k+1)
(ζ-z)^(k+1)-(ζ-z-h)^(k+1)
=(k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1)
( f^((k) ) (z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_C((k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
=(k+1)!/( 2πi) ?_Cf(ζ)/((ζ-z-h)^(k+1) (ζ-z) ) dζ-k!/( 2πi) ?_C((_k+1^ )C_2 (ζ-z)^(k-1) h-?+h^k)/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
 h→0
f^((k+1)) (z)
835: 与作 09/13(土)16:24 ID:PeUov9II(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
836: 与作 09/13(土)16:25 ID:PeUov9II(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
837: 与作 09/13(土)16:26 ID:PeUov9II(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
838: 09/14(日)07:12 ID:49ZWaPLL(1/3) AAS
y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1)
y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1)
=(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) )
=- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x)

y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x)
=C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x)
=(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
y_s=1/2cos(x)
y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x)
=C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x)
=(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
839: 09/14(日)07:13 ID:49ZWaPLL(2/3) AAS
F(ω)=∫[-∞→∞]f(t)e^(-jωt)dt
f(t)= F^(-1) [F(ω)]=1/2π ∫[-∞→∞]F(ω) e^jωt ? dω
g(t)={(0(t<0):f(t)e^(-σt)t≧0)
G(ω)=∫[-∞→∞]g(t)e^(-jωt)dt
=∫[0→∞]g(t)e^(-jωt)dt
=∫[0→∞]f(t)e^(-σt)e^(-jωt)dt
=∫[0→∞]f(t)e^(-(σ+jω)t)dt
s=σ+jω
F(s)=∫[0→∞]f(t)e^(-st)dt
s=σ+jω  ds=jdω  ω: -∞ → ∞
s:σ-j∞→σ+j∞
g(t)=(1/2π)[-∞→∞]F(s)e^jωtdω
=(1/2πj)∫[σ-j∞→σ+j∞]F(s)e^jωtds
f(t)e^(-σt)=f(t)/e^σt
=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^jωtds
f(t)=(1/2πj)∫[σ-j∞→σ+j∞]F(s)e^σt e^jωtds
=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^(σ+jω)tds
f(t)=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^stds
840: 09/14(日)07:14 ID:49ZWaPLL(3/3) AAS
k^2 -3k + 2 = (k-1)(k-2) = 0 k = 1, 2
y''(t) - 3'y(t) + 2y(t) = 0
y0 = C1e^t + C2e^(2t)
v(t) = 1/(D-1)(D-2)*e^(-t)
= 1/(D-2)*e^(-t) - 1/(D-1)*e^(-t)
= (-1/3)e^(-t) + (1/2)e^(-t) = (1/6)e^(-t)
 よって?の一般解は
y(t) = C1e^t + C2e^(2t) + (1/6)e^(-t)
y(0) = C1 + C2 + 1/6 = 1/6
C1 + C2 = 0 …… ?
y'(t) = C1e^t + C2*2e^(2t) - (1/6)e^(-t)
y'(0) = C1 + C2*2 - 1/6 = 5/6
C1+ 2C2 = 1……?
C1 = -1, C2= 1
y(t) = -e^t +e^(2t) + (1/6)e^(-t)
841: 与作 09/14(日)16:17 ID:IGsk2b10(1/3) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
842: 与作 09/14(日)16:18 ID:IGsk2b10(2/3) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
843: 与作 09/14(日)16:19 ID:IGsk2b10(3/3) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
844: 09/15(月)07:53 ID:FprhnjkS(1/3) AAS
k^2 -3k + 2 = (k-1)(k-2) = 0 k = 1, 2
y''(t) - 3'y(t) + 2y(t) = 0
y0 = C1e^t + C2e^(2t)
v(t) = 1/(D-1)(D-2)*e^(-t)
= 1/(D-2)*e^(-t) - 1/(D-1)*e^(-t)
= (-1/3)e^(-t) + (1/2)e^(-t) = (1/6)e^(-t)
y(t) = C1e^t + C2e^(2t) + (1/6)e^(-t)
y(0) = C1 + C2 + 1/6 = 1/6
C1 + C2 = 0 …… ?
y'(t) = C1e^t + C2*2e^(2t) - (1/6)e^(-t)
y'(0) = C1 + C2*2 - 1/6 = 5/6
C1+ 2C2 = 1……?
 ??より
C1 = -1, C2= 1
y(t) = -e^t +e^(2t) + (1/6)e^(-t)
845: 09/15(月)07:57 ID:FprhnjkS(2/3) AAS
(D^2+1)y=1/(cos^3 (x) )
(D^2+1)y=0
λ^2+1=0 λ=0±i
y_0=e^(-0) (C_1 cos(x)+C_2 sin(x))=C_1 cos(x)+C_2 sin(x)
cos(x)=((e^ix+e^(-ix))/2)
1/(cos^3 (x) )=(2/(e^ix+e^(-ix) ))^3=8/(e^ix+e^(-ix) )^3
(D^2+1) y_s=8/(e^ix+e^(-ix) )^3
(D+i)(D-i) y_s=8/(e^ix+e^(-ix) )^3
y_s=(1/(D+i))(1/(D-i))(8/(e^ix+e^(-ix) )^3)
(1/(D-i))(8/(e^ix+e^(-ix) )^3 )=8e^ix 1/D e^(-ix) 1/(e^ix+e^(-ix) )^3
=8e^ix ∫?e^(-ix)/(e^ix+e^(-ix) )^3 dx
e^(-ix)/(e^ix+e^(-ix) )^3 =(e^3ix e^(-ix))/(e^3ix (e^ix+e^(-ix) )^3 )=e^2ix/((e^ix )^3 (e^ix+e^(-ix) )^3 )
=e^2ix/(e^ix (e^ix+e^(-ix) ))^3 =e^2ix/(e^2ix+1)^3
∴1/(D-i) 8/(e^ix+e^(-ix) )^3 =8e^ix ∫?e^(-2ix)/(e^2ix+1)^3 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫?(8e^2ix)/(e^2ix+1)^3 dx=∫?(8e^2ix)/t^3 dt/(2ie^2ix )=∫?4/t^3 dt/i
=-∫?4i/t^3 dt=-4i∫?t^(-3) dt =-4i ?-t?^(-2)/2=2it^(-2)
=2i/(e^2ix+1)^2
y_s=1/(D+i)(2i/(e^2ix+1)^2)=e^(-ix)1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫?(2ie^2ix)/(e^2ix+1)^2 dx
t=e^2ix+1    dt=2ie^2ix dx    dx=dt/(2ie^2ix )
∫(2ie^2ix)/(e^2ix+1)^2 dx?=∫(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫?t^(-2) dt=-1/t=-1/(e^2ix+1)
y_s=e^(-ix) ∫?(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1)
=(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) )
=(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) )
=- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x)
y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x)
=C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x)
=(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
846: 09/15(月)08:05 ID:FprhnjkS(3/3) AAS
(1)自然数nに対しz^2n+z^n+1をz^2+z+1で割った余り
n=3k (k≧1)
z^2n+z^n+1=z^2(3k) +z^3k+1≡3 mod(z^2-z+1)

n=3k+1 (k≧0)
z^2n+z^n+1=z^2(3k+1) +z^(3k+1)+1=z^6k z^2+z^3k z+1
≡z^2+z+1≡0 mod(z^2-z+1)
n=3k+2 (k≧0)
z^2n+z^n+1=z^2(3k+2) +z^(3k+2)+1=z^6k z^4+z^3k z^2+1
≡z^3 z+z^2+1≡ z^2+z+1≡0 mod(z^2-z+1)

(2)自然数nに対しz^2n+z^n+1をz^2-z+1で割った余り
z^3+1=(z+1)(z^2-z+1)
z^3≡-1 mod(z^2-z+1)
z^6≡1 mod(z^2-z+1)
 以下すべて mod(z^2-z+1)
?n=6k (k≧1)
z^2n+z^n+1≡z^2(6k) +z^6k+1≡3
    以下すべて k≧0
? n=6k+1
z^2n+z^n+1≡z^2(6k+1) +z^(6k+1)+1≡z^12k z^2+z^6k z+1
≡z^2+z+1
z^2-z+1≡0⇔ z^2+1≡z ∴z^2+z+1≡2z
?n=6k+2
z^2n+z^n+1≡z^2(6k+2) +z^(6k+2)+1≡z^12k z^4+z^6k z^2+1
≡z^4+z^2+1
z^3≡-1 z^4≡-z ∴z^4+z^2+1≡z^2-z+1≡0
?n=6k+3
z^2n+z^n+1=z^2(6k+3) +z^(6k+3)+1=z^12k z^6+z^6k z^3+1
≡1+z^3+1≡1
?n=6k+4
z^2n+z^n+1=z^2(6k+4) +z^(6k+4)+1=z^12k z^6 z^2+z^6k z^4+1
≡z^2+z^4+1≡z^2-z+1≡0
省5
847: 与作 09/15(月)10:30 ID:0WxCAwo7(1/4) AAS
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
848: 与作 09/15(月)10:31 ID:0WxCAwo7(2/4) AAS
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
849: 与作 09/15(月)10:31 ID:0WxCAwo7(3/4) AAS
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
850: 与作 09/15(月)18:47 ID:0WxCAwo7(4/4) AAS
ab=cdならば、a=kcのとき、b=d/kとなる。
851: 09/16(火)08:17 ID:+a44gZV8(1/3) AAS
P(X=k)=( _(n-k) C_2)/( _n C_3 )=((n-k)(n-k-1)/2)/(n(n-1)(n-2)/3∙2)=3(n-k)(n-k-1)/n(n-1)(n-2)
E[X]=?_(k=1)^n▒〖k 3(n-k)(n-k-1)/n(n-1)(n-2) 〗=3?_(k=1)^n▒〖k ((n-k)^2-(n-k))/n(n-1)(n-2) 〗
=3?_(k=1)^n▒〖k (k^2-2nk+n^2-n+k)/n(n-1)(n-2) 〗=3?_(k=1)^n▒〖k (k^2+(1-2n)k+n^2-n)/n(n-1)(n-2) 〗
=3?_(k=1)^n▒(k^3+(1-2n) k^2+(n^2-n)k)/n(n-1)(n-2)
?_(k=1)^n▒〖k^3+(1-2n) k^2+(n^2-n)k〗
=(n(n+1)/2)^2-(2n-1) n(n+1)(2n+1)/6+(n^2-n) n(n+1)/2
=n(n+1)/2 (n(n+1)/2-(2n+1)(2n-1)/3+n^2-n)
=n(n+1)/2 ((〖3n〗^2+3n-2(4n^2-1)+〖6n〗^2-6n)/6)
=n(n+1)/2 ((n^2-3n+2)/6) =n(n+1)/2∙(n-1)(n-2)/6
=n(n+2)(n-1)(n-2)/12
∴E[X]=3(1/n(n-1)(n-2) ∙n(n+2)(n-1)(n-2)/12)=(n+1)/4
852: 09/16(火)08:17 ID:+a44gZV8(2/3) AAS
?_(k=1)^n▒2k(n-k)/n(n-1) =?_(k=1)^n▒(2kn/n(n-1) -〖2k〗^2/n(n-1) )
=2?_(k=1)^n▒k/(n-1)-2?_(k=1)^n▒k^2/n(n-1)
=2/(n-1)∙n(n+1)/2-2/n(n-1) ∙n(n+1)(2n+1)/6
=n(n+1)/(n-1)-1/(n-1)∙(n+1)(2n+1)/3
=(n+1)/(n-1) (n-(2n+1)/3)=(n+1)/(n-1)∙(3n-2n-1)/3
=(n+1)/(n-1)∙(n-1)/3=(n+1)/3
?_(k=1)^n▒k/(n-1)=1/(n-1)+2/(n-1)+⋯+n/(n-1)
=1/(n-1) (1+2+⋯+n)=1/(n-1)∙n(n+1)/2=n(n+1)/2(n-1)
n=10のときE[X]=11/3

?_(k=1)^n▒2k(10-k)/(10∙9)= (1*18+2*16+3*14+4*12+5*10)/90
+(6*8+7*6+8*4+9*2+10*0)/90
=330/90=11/3
853: 09/16(火)08:19 ID:+a44gZV8(3/3) AAS
f(θ)=|θ| (-π<θ≤π)
f(θ)=a_0/2+?_(k=1)^∞▒〖a_k cos(kθ) 〗
a_0=1/π ∫_(-π)^π▒〖θcos(0)dθ=〗 2/π ∫_0^π▒〖θdθ=2/π [θ^2/2]_0^π=π〗
a_k=1/π ∫_(-π)^π▒〖θcos(kθ)dθ=2/kπ〗 ∫_0^π▒〖θ(sin(kθ))^' 〗 dθ
=2/kπ ([█(  @θsin(kθ)@ )]_0^π-∫_0^π▒sin(kθ) dθ)=2/kπ [2/k cos(kθ)]_0^π
=2/(k^2 π) (cos(kπ)-1)=2((-1)^k-1)/(k^2 π) ( k=1,2,3⋯⋯)
∴f(θ)=π/2+?_(k=1)^∞▒〖2((-1)^k-1)/(k^2 π) cos(kθ) 〗
=π/2+(-4)/(1^2 π) cos(θ)+0/(2^2 π) cos(2θ)+(-4)/(3^2 π) cos(3θ)+⋯
=π/2-4/π (cos(θ)+1/3^2 cos(3θ)+1/5^2 cos(5θ)+⋯)

f(0)=π/2-4/π (1+1/3^2 +1/5^2 +⋯)=0 π/2=4/π (1+1/3^2 +1/5^2 +⋯)
∴〖 π〗^2/8=(1+1/3^2 +1/5^2 +⋯)
854: 09/17(水)05:04 ID:erGd2uYu(1/3) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
∫_0^(π/2)?(tan(x))^(1/n) dx=∫_0^(π/2)?( (sin(x))^(1/n))/( (cos(x))^(1/n) ) dx=∫_0^(π/2)?( t^(1/2n))/(1-t)^(1/2n) (t^(-1/2) (1-t)^(1/2))/2 dt

=1/2 ∫_0^(π/2)???t^(1/2n) (1-t)^(-1/2n) t?^(-1/2) (1-t)^(-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2n-1/2) (1-t)^(-1/2n-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
(1/2) B(1/2+1/(2n), 1/2-1/(2n))
= (1/2) Γ( 1/2+1/(2n) ) Γ( 1/2-1/(2n) ) / Γ( 1/2+1/(2n) + 1/2-1/(2n) )
= (1/2) Γ(z) Γ(1-z) / Γ(1)
= (1/2) ( π/sin(πz) ) / 0!
= π/( 2 sin(πz) )
= π/( 2 sin(π/2+π/(2n)) )
= π/( 2 cos(π/(2n)) ).
855: 09/17(水)05:04 ID:erGd2uYu(2/3) AAS
f(z)=1/(1-z) z=i で展開
?@) |z-i|<√2
(1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i)
1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i))
=1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?)
=(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +?
=((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +?
=納n=0→∞]((1+i)/2)^(n+1) (z-i)^n
※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2

?A) |z-i|>√2の場合
|z-i|/√2=|(z-i)/(1-i)|>1
すなわち、0<|(1-i)/(z-i)|<1となるから((1-i)/(z-i))^n の級数展開を考える。
1/(1-z)=1/(1-i-(z-i) )=-1/(z-i)?1/(1-(1-i)/(z-i))
=-1/(z-i) (1+((1-i)/(z-i))+((1-i)/(z-i))^2+((1-i)/(z-i))^3+?)
=-(1/(z-i)+(1-i)/(z-i)^2 +(1-i)^2/(z-i)^3 +?)
=-(1/(z-i)+2/(1+i)(z-i)^2 +2^2/?(1+i)^2 (z-i)?^3 +?)
=-((2^0 (z-i)^(-1))/(1+i)^0 +(2^1 (z-i)^(-2))/(1+i)^1 +(2^2 (z-i)^(-3))/(1+i)^2 +?)
=-(?(1+i)^0 (z-i)?^(-1)/2^0 +?(1+i)^(-1) (z-i)?^(-2)/2^(-1) +((1+i)^(-2) (z-i)^(-3))/2^(-2) +?)
=-納n=1→∞]((1+i)/2)^(1-n) (z-i)^(-n)
※(1-i)^2=(1-i)(1-i)=(1-i)(1+i)/(1+i)?(1-i)(1+i)/(1+i)=2^2/(1+i)^2
(1-i)^n=2^n/(1+i)^n
856: 09/17(水)05:08 ID:erGd2uYu(3/3) AAS
(x+1)^2020 をx^3+x^2+x+1で割った余り
  x^3+x^2+x+1=x^2(x+1)+(x+1)=(x^2+1)(x+1)
  (x+1)^2019≡P(x) (mod x^2+1)
  (x+1)^2020≡P(x)(x+1) (mod (x^2+1)(x+1))
  x^3+x^2+x+1=x^2 (x+1)+(x+1)=(x^2+1)(x+1)
  x^2≡-1 (mod x^2+1)
  (x+1)^2019=(x+1)(x+1)^2018
  (x+1)^2018=(x+1)^(2?1009)=((x^2+1)+2x)^1009
              ≡(2x)^1009≡2^1009 x^1008 x≡2^1009 x^(2?504) x
              ≡2^1009 (-1)^504 x≡2^1009 x (mod x^2+1)
  (x+1)^2019≡2^1009 x(x+1)
       ≡2^1009 (x^2+x)
       ≡2^1009 (x-1) (mod x^2+1)
  (x+1)^2020≡(x+1)(2^1009 )(x-1)
       ≡(x^2-1) 2^1009 (mod (x+1)(x^2+1))
857: 09/18(木)03:43 ID:NyHKnoJ/(1/3) AAS
M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx?
M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx )
=-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 )
=-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) )
=-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2
M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx
=1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx
=1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx
t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt
(x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2
-∞<x?∞ ⇒-∞<t?∞
858: 09/18(木)03:45 ID:NyHKnoJ/(2/3) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
∫_0^(π/2)?(tan(x))^(1/n) dx=∫_0^(π/2)?( (sin(x))^(1/n))/( (cos(x))^(1/n) ) dx=∫_0^(π/2)?( t^(1/2n))/(1-t)^(1/2n) (t^(-1/2) (1-t)^(1/2))/2 dt

=1/2 ∫_0^(π/2)???t^(1/2n) (1-t)^(-1/2n) t?^(-1/2) (1-t)^(-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2n-1/2) (1-t)^(-1/2n-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
(1/2) B(1/2+1/(2n), 1/2-1/(2n))
= (1/2) Γ( 1/2+1/(2n) ) Γ( 1/2-1/(2n) ) / Γ( 1/2+1/(2n) + 1/2-1/(2n) )
= (1/2) Γ(z) Γ(1-z) / Γ(1)
= (1/2) ( π/sin(πz) ) / 0!
= π/( 2 sin(πz) )
= π/( 2 sin(π/2+π/(2n)) )
= π/( 2 cos(π/(2n)) ).
859: 09/18(木)03:45 ID:NyHKnoJ/(3/3) AAS
∫[0→π/2]( tan(x) )^(1/n) dx  (n≧2)
∫_0^(π/2)?(tan(x))^(1/n) dx を求める。
t=?sin?^2 x=(sin(x))^2
?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t
dt=2sin(x)cos(x)dx=2√t √(1-t) dx
dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt
(sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n)
∫_0^(π/2)?(tan(x))^(1/n) dx=∫_0^(π/2)?( (sin(x))^(1/n))/( (cos(x))^(1/n) ) dx=∫_0^(π/2)?( t^(1/2n))/(1-t)^(1/2n) (t^(-1/2) (1-t)^(1/2))/2 dt

=1/2 ∫_0^(π/2)???t^(1/2n) (1-t)^(-1/2n) t?^(-1/2) (1-t)^(-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2n-1/2) (1-t)^(-1/2n-1/2) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
=1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt
(1/2) B(1/2+1/(2n), 1/2-1/(2n))
= (1/2) Γ( 1/2+1/(2n) ) Γ( 1/2-1/(2n) ) / Γ( 1/2+1/(2n) + 1/2-1/(2n) )
= (1/2) Γ(z) Γ(1-z) / Γ(1)
= (1/2) ( π/sin(πz) ) / 0!
= π/( 2 sin(πz) )
= π/( 2 sin(π/2+π/(2n)) )
= π/( 2 cos(π/(2n)) ).
860: 09/18(木)06:52 ID:z6Ykaesg(1/12) AAS
何やってるバカスレ
861: 09/18(木)06:53 ID:z6Ykaesg(2/12) AAS
素数 X+Y
これが広大ならば
数学世界はこれだ
連立方程式や距離や時間は別のジャンルだ
862: 09/18(木)06:55 ID:z6Ykaesg(3/12) AAS
フェルマーの最終定理は地道に突破するしかない
屁理屈では証明不可能だ
863: 09/18(木)06:55 ID:z6Ykaesg(4/12) AAS
16ケタで限界では話にならない
864: 09/18(木)07:00 ID:z6Ykaesg(5/12) AAS
平行四辺形の面積をまっとうなやり方で算出しろ
これができたらフェルマーを超えるだろう
865: 09/18(木)07:01 ID:z6Ykaesg(6/12) AAS
底辺かける高さを正方形で使用したのなら
他の図形で同一式を使ってはならない
長方形でもだめだ
866: 09/18(木)07:02 ID:z6Ykaesg(7/12) AAS
底辺かける高さ 半径x半径 二乗
これらは=ではない
867: 09/18(木)07:03 ID:z6Ykaesg(8/12) AAS
r² と X²
これを別のものとして捉えているのが数学だぞ
868: 09/18(木)07:05 ID:z6Ykaesg(9/12) AAS
fracがx+yの幻想なのだから
sin cos tan πも同様の幻想と識別できる
869: 09/18(木)07:14 ID:z6Ykaesg(10/12) AAS
数学では X² を正方形ですと言っていない
r²の方すら言ってないがな
870: 09/18(木)07:17 ID:z6Ykaesg(11/12) AAS
正方形になりうる二乗はプロペラの如く回転可能であるが
底辺かける高さは回転不可能だ
871: 09/18(木)07:19 ID:z6Ykaesg(12/12) AAS
底辺かける高さの式を回転させるとあらぬ方向に飛んでいくだろう
このジャンルは物理ということになる
872: 09/19(金)04:39 ID:LR/DMPMr(1) AAS
口頭で説明できないと証明したことにならないかんな
カンペ読んだら無効
873: 09/19(金)12:25 ID:3gCB+OPO(1) AAS
♂↑(s,t) = ( x(s,t), y(s,t), z(s,t) )
♀↑(u,v) = ( x(u,v), y(u,v), z(u,v) )
1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.040s