フェルマーの最終定理の証明 (873レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
795: 132人目の素数さん [] 2025/09/07(日) 11:01:14.76 ID:g2aKRGvd y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix ) ∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1) y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1) =(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) ) =- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x) y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x) =C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x) =(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x) =Acos(x)+Bsin(x)+1/2cos(x) y_s=1/2cos(x) y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x) =C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x) =C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x) =C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x) =(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x) =Acos(x)+Bsin(x)+1/2cos(x) http://rio2016.5ch.net/test/read.cgi/math/1745314067/795
796: 132人目の素数さん [] 2025/09/07(日) 11:01:43.16 ID:g2aKRGvd D^2+1)y=1/(?cos?^3 (x) ) (D^2+1)y=0 λ^2+1=0 λ=0±i y_0=e^(-0) (C_1 cos(x)+C_2 sin(x))=C_1 cos(x)+C_2 sin(x) cos(x)=((e^ix+e^(-ix))/2) 1/(cos^3(x))=(2/(e^ix+e^(-ix) ))^3=8/(e^ix+e^(-ix) )^3 (D^2+1) y_s=8/(e^ix+e^(-ix) )^3 (D+i)(D-i) y_s=8/(e^ix+e^(-ix) )^3 y_s=(1/(D+i))(1/(D-i)) 8/(e^ix+e^(-ix) )^3 1/(D-i) 8/(e^ix+e^(-ix) )^3 =8e^ix 1/D e^(-ix) 1/(e^ix+e^(-ix) )^3 =8e^ix ∫e^(-ix)/(e^ix+e^(-ix) )^3 dx e^(-ix)/(e^ix+e^(-ix) )^3 =(e^3ix e^(-ix))/(e^3ix (e^ix+e^(-ix) )^3 )=e^2ix/((e^ix )^3 (e^ix+e^(-ix) )^3 ) =e^2ix/(e^ix (e^ix+e^(-ix) ))^3 =e^2ix/(e^2ix+1)^3 ∴1/(D-i) 8/(e^ix+e^(-ix) )^3 =8e^ix ∫e^(-2ix)/(e^2ix+1)^3 dx t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix ) ∫(8e^2ix)/(e^2ix+1)^3 dx=∫(8e^2ix)/t^3 dt/(2ie^2ix )=∫4/t^3 dt/i =-∫4i/t^3 dt=-4i∫t^(-3) dt =-4i ?-t?^(-2)/2=2it^(-2) =2i/(e^2ix+1)^2 http://rio2016.5ch.net/test/read.cgi/math/1745314067/796
797: 132人目の素数さん [] 2025/09/07(日) 11:02:46.15 ID:g2aKRGvd ∫[0→π/2]( tan(x) )^(1/n) dx (n≧2) ∫_0^(π/2)?(tan(x))^(1/n) dx を求める。 t=?sin?^2 x=(sin(x))^2 ?sin?^2 x=1-?cos?^2 x ?cos?^2 x=1-t dt=2sin(x)cos(x)dx=2√t √(1-t) dx dx=dt/(2√t √(1-t))=(t^(-1/2) (1-t)^(1/2))/2 dt (sin(x))^(1/n)=(√t)^(1/n)=t^(1/2n) (cos(x))^(1/n)=(√(1-t))^(1/n)=(1-t)^(1/2n) ∫_0^(π/2)?(tan(x))^(1/n) dx=∫_0^(π/2)?( (sin(x))^(1/n))/( (cos(x))^(1/n) ) dx=∫_0^(π/2)?( t^(1/2n))/(1-t)^(1/2n) (t^(-1/2) (1-t)^(1/2))/2 dt =1/2 ∫_0^(π/2)???t^(1/2n) (1-t)^(-1/2n) t?^(-1/2) (1-t)^(-1/2) ? dt =1/2 ∫_0^(π/2)??t^(1/2n-1/2) (1-t)^(-1/2n-1/2) ? dt =1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt =1/2 ∫_0^(π/2)??t^(1/2+1/2n-1) (1-t)^(1/2-1/2n-1) ? dt (1/2) B(1/2+1/(2n), 1/2-1/(2n)) = (1/2) Γ( 1/2+1/(2n) ) Γ( 1/2-1/(2n) ) / Γ( 1/2+1/(2n) + 1/2-1/(2n) ) = (1/2) Γ(z) Γ(1-z) / Γ(1) = (1/2) ( π/sin(πz) ) / 0! = π/( 2 sin(πz) ) = π/( 2 sin(π/2+π/(2n)) ) = π/( 2 cos(π/(2n)) ). http://rio2016.5ch.net/test/read.cgi/math/1745314067/797
798: 132人目の素数さん [] 2025/09/07(日) 23:57:57.90 ID:g2aKRGvd r↑(θ,φ) = ( asinθcosφ, asinθsinφ, acosθ ) ∂r↑/∂θ↑= ( acosθcosφ, acosθsinφ, -asinθ ). ∂r↑/∂φ↑= ( -asinθsinφ, asinθcosφ, 0 ). ∂r↑ ∂r↑ ──×── ∂θ ∂φ = ( |acosθsinφ -asinθ| |-asinθ acosθcosφ| | acosθcosφ, acosθsinφ| |asinθcosφ 0 |, | 0 -asinθsinφ|, |-asinθsinφ, asinθcosφ | ) = ( a^2sin^2θcosφ, a^2sin^2θsinφ, a^2cos^2φsinθcosθ+ a^2sin^2φsinθcosθ ) = ( a^2sin^2θcosφ, a^2sin^2θsinφ, a^2sinθcosθ ). |∂r↑ ∂r↑| |──×── | = √( a^4sin^4θcos^2φ + a^4sin^4θsin^2φ+ a^4sin^2θcos^2θ) |∂θ ∂φ | = √( a^4sin^4θ + a^4sin^2θcos^2θ) = √( a^4sin^2θ(sin^θ + cos^2θ) ) = √( a^4sin^2θ) = a^2sinθ. ∬_S 1 dS |∂r↑ ∂r↑| = ∬_D |──×── |dθdφ |∂θ ∂φ | = a^2∬[D] sinθdθdφ = a^2∫[0,2π]dφ∫[0,π]sinθdθ = 4πa^2 http://rio2016.5ch.net/test/read.cgi/math/1745314067/798
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.037s