スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (294レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
252(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/20(金)16:48 ID:S3g1Aii2(1) AAS
>>249 追加
1)いま、出題の列 s = (s1,s2,s3 ,・・・) で
箱入り無数目では、100列に並べ替える (mod 100を使えば良い)
勿論、2列でも可です (mod 2を使えば良い)
また、箱入り無数目の決定番号を使う 確率99/100が正しいならば
2列なら確率1/2となる
2)だが、出題の列 s = (s1,s2,s3 ,・・・) の並べ変えなど 面倒なことをせずに
ダミーの列 t = (t1,t2,t3 ,・・・) を、(回答者が勝手に作って)隣に作ればいいのです
ダミーの列の決定番号 dt に対し、問題の列の決定番号 ds として
ds ≦ dt となる確率は 1/2 だという*) ( *)箱入り無数目論法より>>2)
よって、ダミーの列の箱を開けて 決定番号dtを得て
さらには、ds = dt を考慮すれば、dt+2を使って
出題の列 sのdt+2番目以降の箱を開け、出題の列 sの代表を得て
「その代表のdt番目数=出題の列のdt番目数」と唱えれば
あ〜ら ふしぎ dt番目の箱の数を、箱を開けずに 確率1/2で適中できるとさ!w ;p)
3)さて、上記2)項の手法が、本来の箱入り無数目より、奇妙奇天烈なのは
ダミーの列 t は、そもそも 出題の列 s とは何の関係も無い列であるにも関わらず
出題の列 sの dt番目数の任意実数を、箱を開けずに 確率1/2で適中できるのに使えるとは
これ如何に?w ;p)
4)さらに、箱入り無数目の>>2通りに、99列を 出題の列 sのとなりに並べて
列 t1,t2,t3,・・,t99 とやれば
dt1〜dt99 までの99個の決定番号が手に入る。その最大値 dtmax=max(dt1,・・,dt99) を取って
ds ≦ dtmax となる確率は 99/100 となる (箱入り無数目論法より)
上記2)項の手法で、出題の列 sのdtmax+2番目以降の箱を開け、出題の列 sの代表を得て
「その代表のdtmax番目数=出題の列のdtmax番目数」と唱えれば
あ〜ら ふしぎ dtmax番目の箱の数を、箱を開けずに 確率99/100で適中できるとさ!w ;p)
(箱入り無数目論法>>2の通り、99列をもっと大きな任意の数の列にすれば、”確率1-ε で勝てることも明らかであろう”w)
これまた、本来の箱入り無数目よりも 奇妙奇天烈な 数学パズルなり〜!
要するに、>>249で述べた如く
決定番号dなる量は、本質的に発散している量であって
非正則分布を成すゆえ (>>154の4)項ご参照)
省5
253(1): 06/20(金)17:03 ID:5VJHkbCl(1/2) AAS
>>252
>ダミーの列の決定番号 dt に対し、問題の列の決定番号 ds として
> ds ≦ dt となる確率は 1/2 だという*) ( *)箱入り無数目論法より>>2)
誤読
なんど言えば分かるんだ? このオチコボレは
言葉が分からないなら国語からやり直せよ
255(1): 06/20(金)21:10 ID:v1Sk8AyC(1/2) AAS
>>252
> 出題の列 s = (s1,s2,s3 ,・・・) の並べ変えなど 面倒なことをせずに
> ダミーの列 t = (t1,t2,t3 ,・・・) を、(回答者が勝手に作って)隣に作ればいいのです
高卒は考えるのが苦手だからすぐ面倒くさがって、違うこと考える だから間違う
面倒くさがったら数学は絶対理解できない
必ずn列作ってどちらか選ぶこと
n列のうち他方より大きい列はたかだか1列しかない
どれをを選んでも当たらない、ということはない
当たらない列はn列のうちたかだか1列しかないのだから
選ばないから間違う
256(1): 06/20(金)21:20 ID:v1Sk8AyC(2/2) AAS
>>252
>決定番号dなる量は、本質的に発散している量であって非正則分布を成す
99列の決定番号の最大値Dなる量も、本質的に発散している量であって非正則分布を成す
したがってd<=Dなる確率が0とかいう高卒の主張は全くの誤り
dが確率変数ならDも確率変数であって定数ではない
ただ、箱入り無数目の確率はそんな難しいことを使っていない
なぜなら列siの決定番号diも、si以外の列の決定番号の最大値Diも、両方とも定数だから
100個の列siについてdi<=Diの真偽値は全部決まっている
そして、di<=Diが偽となるsiはたかだか1つしかない
だからその1つを選ばなければ当たる
したがって確率は1-1/100=99/100
省2
262(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/28(土)11:06 ID:Om34p0pv(2/2) AAS
>>252 補足
箱入り無数目>>1 の 可算無限列
R^Nで s = (s1,s2,s3 ,・・・)
まず、長さLの有限列で考察して その後 L→∞ として 可算無限列を考察する
1)R^Lで s = (s1,s2,s3 ,・・,sL) とする
しっぽ同値のs'=(s'1, s'2, s'3,・・,sL)
当然 しっぽのsLの部分は共通で一致している
決定番号d は、d ≦ L
では、その一つ前の sL と s'L との比較はどうか?
箱に入れる数を 実数Rの任意とすると sL = s'L の確率は0
よって、d = L の確率1、d < L の確率0
そして、L→∞ とすると d = ∞ の確率1、d < ∞ の確率0
これは、有限dは存在するが、あたかも零集合で 確率計算に使えないのです
これは、L→∞において 分布が発散する 非正則分布(>>7-8)になるということ
2)補足で R→ 1〜1000 の整数を箱に入れたとする
1000^Lで s = (s1,s2,s3 ,・・,sL)
しっぽ同値のs'=(s'1, s'2, s'3,・・,sL)
当然 しっぽのsLの部分は共通で一致している
決定番号d は、d ≦ L
では、その一つ前の sL と s'L との比較はどうか?
箱に入れる数を 1〜1000 の整数とすると sL = s'L の確率は1/1000
よって、d = L の確率999/1000、d < L の確率1/1000
そして、L→∞ とすると d ≒ ∞ の確率1、d < ∞ の確率0
この場合も、有限dは存在するが、あたかも零集合で 確率計算に使えないのです
やはり、L→∞において 分布が発散する 非正則分布(>>7-8)になるということ
これが、箱入り無数目トリックです■
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.040s