スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (310レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
150
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/08(日)18:30 ID:cYYLjQao(2/4) AAS
>>149
>AIは信用できんな。質問者の誘導によって答えが変わりうるから。

ありがとうございます
スレ主です

バカとハサミは、使いよう・・・、これはいままでの格言
これからは
バカとハサミとAIは、使いよう!(21世紀格言w)
だな

”素直に問題全文食わせて、質問すればいいだけ”と宣うやつがいるww ;p)
AIは、世に 沢山の文献がある場合、正しい回答になる可能性が高い(多数文献の集約意見が回答になるだろう)

しかしながら、文献が殆どないことに対する回答は
相当に マユツバと 思うべし!!!www ;p)
9
(1): 01/15(水)11:30 ID:ZCTGHyhi(9/19) AAS
つづき

2chスレ:math スレ18
再録>>150より
 >・箱一つ、サイコロ一つの目を入れる。確率変数Xで扱う
 入れた目をx、賭ける目をyと書く
 xが確率変数ならばyに依存せず的中確率=1/6であるはず
 しかし実際には x=yのとき的中確率=1 x≠yのとき的中確率=0
 よって矛盾
 よってxは確率変数でない
 一方、yをランダム選択した場合、yが確率変数である
 実際、この場合はxに依存せず的中確率=1/6である
 以上の通り、「見えないもの=確率変数」は間違い
(引用終り)

・そういえば、中学生の時代に似た疑問をもった記憶がある
 この話は記憶の彼方(解決したのか不明)
・さていま考えてみると、>>99の2008年東工大 数学 第3問 ”いびつなサイコロ”の応用で解ける
 >>209よりこの問題のΩは、”サイコロを2回ふったとき”
 Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
 (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
 (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
 (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
 (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),
 (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}で
 組合せ6x6の36通り、2次元で考える必要がある
 サイコロ1回だとΩ={1,2,3,4,5,6}
 普通のサイコロだと確率は各1/6ですが、いびつサイコロだと確率p1,p2,p3,p4,p5,p6≠1/6 で扱う
・いま、簡単に箱一つ 正常なサイコロ一つの目を入れる。確率変数Xで扱うとしてΩ={1,2,3,4,5,6}
 P(X=1)=P(X=2)=P(X=3)=P(X=4)=P(X=5)=P(X=6)=1/6
 一方数当ての人が唱える数が、1〜6のランダムとして、これを確率変数Yで扱うとしてΩ={1,2,3,4,5,6}
 P(Y=1)=P(Y=2)=P(Y=3)=P(Y=4)=P(Y=5)=P(Y=6)=1/6
 よって、的中は同じ数で揃った場合で、(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)の6通り 6*1/36=1/6で理論通り
省8
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.021s