[過去ログ] 現代数学の系譜11 ガロア理論を読む17 [転載禁止]©2ch.net (747レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
672: 2016/01/09(土)00:03 ID:Ueu6ZS/K(1/2) AAS
>>671
懲りずに同じ議論を繰り返す馬鹿
684(1): 2016/01/09(土)11:03 ID:Ueu6ZS/K(2/2) AAS
1週間たっても何の進展もないスレ主へ。
>>673
> 4.そこで、具体的な小さい数Dに対しては、mをどんどん大きくすると、中央値からの距離Δは、
> 相対的に、ほとんど(m+1)/2に等しいと見なすことができて、上記3の場合のD<d(s^k)となる確率は1に近づく。
> 5.逆に、D>=d(s^k)となる(小さいか等しい)確率は、上記3の場合0に近づく。
お前は『具体的な小さい数Dに対しては』という仮定をおいている。
このとき求まる確率は『Dが既知のときにD<d(s^k)となる条件付確率』であって、
『Dが未知のときにD<d(s^k)となる(事前)確率』ではない。
当たり前だがこのゲームはDが未知の状態からスタートする。
よって求めるべき確率(ゲームに勝つ確率)は後者であり前者ではない。
>>671
> 7)そこで、最大値を、13より大きな数m(簡単のために奇数)としてみよう。D<d(s^k)となる確率、D=1〜m全体の平均は(m−1)/2m。
> 上で説明したように、中央の(m+1)/2に対して(m−1)/2m。対称の位置のDを二つたして平均して(m−1)/2m。
お前は『D=1〜m全体の平均は(m−1)/2m』と言っている。
これこそが『Dが未知のときにD<d(s^k)となる確率』だ。
m→∞の極限で確率は1/2となる。
記事において箱を2列に並べたときの勝率と一致する。
省14
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.038s