[過去ログ] 数学>>>>物理 (412レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
17: 2011/05/24(火)15:46 ID:??? AAS
数学のひとつの体系は、そもそも実証とは無縁でよく、多少でも自己完結的であれば
(その世間で)存在が認められる。
かたや
物理のひとつの体系は対象とする諸々の実験・観測事実と相反しない理論体系でなけば
成立せず、単に自己完結型論理というだけでは、十分でない(←科学一般)。
そんな物理を記述できる「便利な確立された道具」として論理無矛盾な理論群が存在し、
それらのほとんどが、たまたま(しかし歴史的には必然として)、「数学的」なのである。
18: [age] 2011/05/24(火)20:47 ID:??? AAS
バナッハ=タルスキー(Banach-Tarski)の定理

「球をいくつかの部分に分割し、それらをうまく組み替えることで、
元の球と同じ大きさの球を2つ作ることができる」

という定理です。定理と呼ばれているように、これはきちんと証明された命題です。

こんな定理が出てくるようでは(数学の世界ではOKだとしても)
数学に依存してる物理はもう終わりな気がする。
物理学者としてはこのバナッハタルスキーの定理は使っちゃいけないの?
でもこの定理だけを見て見ぬふりをしても、この定理の存在する系自体使っちゃいけないんじゃないの?
物理おわったな。
19
(2): 2011/05/24(火)20:49 ID:gXh2zNTE(1) AAS
選択公理がウソっぽい。ウソを公理にしてウソを導いただけかと。
20
(2): 2011/05/25(水)00:25 ID:??? AAS
>>19
> 選択公理がウソっぽい。ウソを公理にしてウソを導いただけかと。

同意。
少なくとも現代数学自身の為の公理系と物理理論の記述言語としての数学の為の公理系が同じでなければならない必然性はない。

例えばどの様な大きな集合をも整列可能としてしまう普通の選択公理とは矛盾する決定性公理を採用した集合論に基づく数学では
Banach-Tarskiの逆理は導かれないどころか、全実数の集合Rの任意の部分集合はルベーク可測となる。
しかも決定性公理は通常の無制限な選択公理とは矛盾するが、加算集合に限定した選択公理、つまり加算選択公理を定理として
決定性公理を採用した集合論の公理系から導くことは可能だ。

もっとも、選択公理を物理の為の数学に採用すべきか否か以前に、物理的な時空はべったりと続いた連続体か?という
根本的な疑問があるわけだが。
21
(1): 2011/05/25(水)00:31 ID:??? AAS
>>20
> >>19
> > 選択公理がウソっぽい。ウソを公理にしてウソを導いただけかと。

20に1点だけ書き忘れたので補足しておく。
選択公理自体の「信頼性」、つまり選択公理を採用した集合論公理系の無矛盾性については、決定性公理を採用するよりもずっと高い。
選択公理を採用した集合論公理系をZFCと書きそれから選択公理を除いた公理系をZFと書く事にすると、

ZFが無矛盾 ならば ZFCは無矛盾

という事が証明されている。

つまり公理系の無矛盾性という集合論に対する信頼性に関して、選択公理は悪さを全くしないという事が保証されている。
決定可能性公理では上記に相当する事、つまり
省3
22: 2011/05/25(水)01:00 ID:??? AAS
>>21
諸悪の根源に思える選択公理が、無矛盾性の観点からは
決定性公理より健全なのか。
何という皮肉(^o^)
23: 2011/05/25(水)02:20 ID:??? AAS
>>20への訂正
> しかも決定性公理は通常の無制限な選択公理とは矛盾するが、加算集合に限定した選択公理、つまり加算選択公理を定理として

「加算」→「可算」 (2か所)

ああ恥ずかしい
24: [age] 2011/05/25(水)08:17 ID:??? AAS
>物理的な時空はべったりと続いた連続体か?という根本的な疑問があるわけだが。

やっぱり時空の量子化は避けて通れない?
25: [age] 2011/05/25(水)08:23 ID:??? AAS
数学でいう球は実数で出来てるから無限に数があるけど
現実の球は原子で出来ているので有限個でしょ
そこがかみあってないんじゃないの?
26: 2011/05/25(水)08:24 ID:pYsF3nNo(1) AAS
やれる物ならやってみせろ。妄想は誰にでもできるぞ。
27: [age] 2011/05/25(水)08:30 ID:??? AAS
E=mc^2はどうなるんだ?
E=∞c^2になっちゃうの?
28: 忍法帖【Lv=2,xxxP】 2011/06/05(日)08:42 ID:??? AAS
てす
29
(2): 2011/06/12(日)23:40 ID:/SzoExfY(1) AAS
理論物理と実験物理と純粋数学とでは求められる能力が全然ちがうだろ

まあ経験的帰納、その形式論理(数学)的記述、
現象の予測・コントロール、
学問としても実学の基礎としても
物理学は学問の代表格なのはまちがいない。

一方で、純粋数学は現象や経験が欠けているので、学問や科学とはいえない。
形式論理による数の言語だ。
30: 2011/06/12(日)23:56 ID:??? AAS
メコスジ道>>>>その他武道
31
(1): 2011/06/13(月)05:35 ID:??? AAS
>>29
学問とは文化とか歴史や芸でも知的な識とまとまったものなら学問という。まず
は日本語を学ぼう。
考古学やら哲学(哲学史)やら郷土学が学問とされている理由だ。

その単純すぎる捉え方は、小学生並。
32: 2011/06/13(月)13:09 ID:9ypiXyHR(1/2) AAS
>>31
学問という日本語を使ったのが良くなかったかも。
世界把握・記述の方法論としての科学といえばよかったか。
現代における学(scienceあるいはWissenschaft)といえばよかったか。
この場合は一般的な文化や芸までは含まないだろう。
物理学はその見本にはなるが、数学自体はどうなのかという提言だよ。

学とは、という問題を単純にかんがえてるわけではない。
日本語の慣用にとどまってそれ以上の疑問を抱かないあなたのほうが単純では?
33
(1): 2011/06/13(月)13:13 ID:9ypiXyHR(2/2) AAS
考古学、伝統的哲学の言説、歴史学、経済学、社会学、心理学、物理学、生物学、
そして数学、論理学・・・・
これらの在り方と意味を見直す。

あきらかに数学・論理学・哲学などは異質だろう。
34: 2011/06/13(月)13:29 ID:fHRZuXh+(1) AAS
>>33
>あきらかに数学・論理学・哲学などは異質だろう。
そうか! 科学じゃないんだ!
35: 2011/06/13(月)14:44 ID:??? AAS
数学がノーベル賞に含まれてないのは美女数学者として名高いコワレフスカヤ
にノーベルがふられたからだという説がある
36: 2011/06/13(月)14:54 ID:??? AAS
数学者の藤原正彦がもし数学にノーベル賞があったら日本人は20人は取れてるとかいってたけどホントかなあ?
1-
あと 376 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.003s*