[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)18 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
309: 05/01(水)08:04 ID:sgJI4piv(2/2) AAS
122位
310(1): 05/04(土)23:26 ID:B+vDRgim(1) AAS
高木貞治 『代数的整数論』が、手元に来ました
図書館に頼んでおいたのです。県立図書館から取り寄せたという
なかなか、面白い本です。
序で「本書の校正に尽力された理学博士岩澤健吉君に深厚なる謝意を表する。昭和22年6月東京に於いて」とあります
”理学博士岩澤健吉君”ね
博士課程 彌永昌吉 か
https://hiroyukikojima.はてなブログ.com/entry/2019/08/12/011850
hiroyukikojima’s blog
2019-08-12
高木貞治の数学書がいまさら面白い
省8
311(2): 05/05(日)10:20 ID:IVZzp+jD(1) AAS
整数論志望の学生が大学院の口頭試問で
代数的整数全体が環であることの理由を聞かれて
答えられないことがざらにあったようだ
312: 05/05(日)11:15 ID:hkqtykoW(1/3) AAS
証明はできるけど理由は知らない
313(1): 05/05(日)12:31 ID:wlj0ETgX(1) AAS
証明のアウトラインが説明できなかったのはまずかった
314: 05/05(日)14:48 ID:WLbxyLlj(1/6) AAS
「そんな自明な命題に証明は不要」と逃げると、落とされる
しどろもどろでも、冷や汗書きながら証明しようと努力すると、程度によるが「続きは修士で」と救ってくれるかも・・
315(1): 05/05(日)15:16 ID:WLbxyLlj(2/6) AAS
>>311
>整数論志望の学生が大学院の口頭試問で
>代数的整数全体が環であることの理由を聞かれて
>答えられないことがざらにあったようだ
そうか
これは、御大か
サバキの手筋は、数学では定義から
1)まず、環の定義を唱える
2)代数的整数の定義を唱える
(整数Zにある代数的数αを添加した集合として、αは既約な次数2以上のn次代数方程式f(α)=0の根)
省7
316: 05/05(日)16:16 ID:fBCTdg1W(1/2) AAS
囲碁しか知らん1は代数的整数の定義知らんし
もし知ったところでそれらが環を成すことは証明できんな
サバキだかシバキだか知らんが 1はマセマの線型代数からやり直せ
317(3): 05/05(日)17:10 ID:WLbxyLlj(3/6) AAS
>>315 補足
1)整数の集合Zが環を成すことは既知とする
2)αは既約な重根を持たない(正規分離拡大)次数2以上のn次代数方程式f(α)=0の根として
Zにαを添加したとき
ガロア理論における有理数体Qにαを添加したときと同様に考えて
α,α^2,・・,α^n による環Zのn次の拡大になり、環の公理を満たす
これが一つのスジですね
318(1): 05/05(日)17:19 ID:WLbxyLlj(4/6) AAS
>>317 タイポ訂正
α,α^2,・・,α^n による環Zのn次の拡大になり、環の公理を満たす
↓
α,α^2,・・,α^n-1 による環Zのn-1次の拡大になり、環の公理を満たす
319(1): 05/05(日)17:40 ID:WLbxyLlj(5/6) AAS
>>318 タイポ再訂正
α,α^2,・・,α^n-1 による環Zのn-1次の拡大になり、環の公理を満たす
↓
α,α^2,・・,α^n-1 による環Zのn次の拡大になり、環の公理を満たす
320: 05/05(日)17:47 ID:WLbxyLlj(6/6) AAS
ご参考
https://hooktail.sub.jp/algebra/AlgebraicExtension/
物理のかぎしっぽ
代数的拡大体と最小多項式
最小多項式
最小多項式に関連した定理として,次のものが重要です.
体 F の代数的拡大体を E とし, α を E の元とします. E の部分体の中で, F と α を含む最小の部分体を F(α) とします. F(α) は F 上のベクトル空間です. Irr(α ,F)=n のとき, 1 , α , α ^2,...,α^n-1 は F(α) の基底になります.
321(3): 05/05(日)19:29 ID:hkqtykoW(2/3) AAS
>>317
Z⊂Z[√5]⊂Z[(1+√5)/2]
Z[√5]もZ[(1+√5)/2]も環Zの2次の拡大でいいのか
322(1): 05/05(日)20:13 ID:fBCTdg1W(2/2) AAS
1はやっぱり日本語が正しく読めない
Zにある代数的整数αを添加したものが環か?という問いではない
全ての代数的整数からなる集合が環か?という問いである
323(6): 05/05(日)20:39 ID:HvNo6+XN(1/3) AAS
>>321
>Z⊂Z[√5]⊂Z[(1+√5)/2]
>Z[√5]もZ[(1+√5)/2]も環Zの2次の拡大でいいのか
・環の拡大次数については、詳しくはしらないが
体の場合と同様に、拡大次数をベクトル空間の次数で考えれば是じゃない(次数は大雑把な指標だと)
>>322
>Zにある代数的整数αを添加したものが環か?という問いではない
>全ての代数的整数からなる集合が環か?という問いである
・そうかも。その説は認めるが
・口頭試問の対応スキルとしては、
省4
324(1): 05/05(日)21:07 ID:hkqtykoW(3/3) AAS
>>323
>>317は嘘か
325(2): 05/05(日)22:07 ID:HvNo6+XN(2/3) AAS
>>323
嘘では無い
326: 05/05(日)22:08 ID:HvNo6+XN(3/3) AAS
>>325 リンク訂正
>>323
↓
>>324
327(2): 05/06(月)00:28 ID:Co8XPBRF(1/7) AAS
>>323 補足
・代数的整数の全体 A は加法と乗法について閉じており、ゆえに複素数環 C の部分環をなす だね
・f (α) = 0 を満たすモニック多項式 f (x) ∈ Z[x] が存在する が、急所だ
・下記 ”性質 二つの代数的整数の和、差、積もまた代数的整数となる” のあとにあるように
代数的整数 x, y のモニック多項式 f (x)=0、g (y)=0を使って、h(x+y)=0,h'(xy)=0のモニック多項式が構成できる(つまりx+y、xyが代数的整数になる)
ことを示すんだな
(参考)
https://ja.wikipedia.org/wiki/%E4%BB%A3%E6%95%B0%E7%9A%84%E6%95%B4%E6%95%B0
代数的整数
数論において代数的整数(だいすうてきせいすう、英: algebraic integer)とは、ある整数係数モニック多項式の根となる複素数のことである。代数的整数の全体 A は加法と乗法について閉じており、ゆえに複素数環 C の部分環をなす。この環 A は有理整数環 Z の C における整閉包となっている。
省7
328(2): 05/06(月)00:28 ID:Co8XPBRF(2/7) AAS
つづき
代数的整数をこのように定義する背景には次のような考え方がある[1]。まず、有理数に対する整数のように、代数的数全体の集合の中で「整数の集合」S が何らかの方法で定義できたとする。すると S は次の性質を持っているはずである。
(S1) S は加減算と乗算で閉じている。
(S2) S の元の任意の共役は S に含まれる。
(S3) 有理整数はすべて S に属し、S に含まれる有理数は有理整数のみである。
(S4) S は以上の性質を持つ集合の中でなるべく大きいものである。
このような性質を持つ集合 S は実は代数的整数の集合と一致する。実際、S の任意の元 α に対してその有理数体上の最小多項式 f を取ってみる。f の係数は α の共役達の基本対称式であるから、(S2)と(S1)よりこれは S に含まれる。f の係数は有理数であるから、(S3)よりこれらは有理整数である。よって f は有理整数係数のモニック多項式であるから α は代数的整数である。したがって S は代数的整数の集合に含まれる。代数的整数の集合は(S1)〜(S3)を満たす集合であるので、(S4)により S は代数的整数の集合に一致する。
代数的整数とならない例
P (x) をモニックでない整数係数原始多項式で、かつ Q 上既約であるとする。このとき P (x) の根は代数的整数とならない。(ここで原始多項式とは、係数の最大公約数が 1 であるような多項式のことを言う。これは「係数が互いに素であるような多項式」よりも弱い条件である。)
性質
省5
上下前次1-新書関写板覧索設栞歴
あと 674 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.171s*