[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)12 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
54
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/25(日)09:30 ID:4mPovfMa(1/5) AAS
>>34 追加補足

まず(参考)
https://www-users.york.ac.uk/~bje1/galnotes.pdf
Symmetries of Equations: An Introduction
to Galois Theory
Brent Everitt 2007
Department of Mathematics, University of York,
P6
(1.9) If this was always the case, things would be very simple: Galois theory would just be the study
of the “shapes” formed by the roots of polynomials, and the symmetries of those shapes. It would be a
branch of planar geometry.
But things are not so simple. If we look at the solutions to x
5 - 2 = 0, something quite different
happens:
(図があるが略(というかここには示せない))
(言葉で書くと、複素平面上の半径r=α =2^1/5上に頂点を持つ正5角形で、頂点の一つが実数α =2^1/5で、そこから反時計回りに、αω,αω^2,αω^3,αω^4 と頂点が配置された図)
α =2^1/5
ω:1の5乗根
We will see later on how to obtain these expressions for the roots. A pentagon has 10 geometric symmetries, and you can check that all arise as symmetries of the roots of x^5 - 2 using the same reasoning as in
the previous example. But this reasoning also gives a symmetry that moves the vertices of the pentagon
according to:
(図があるが略(というかここには示せない))
(言葉で書くと、α は不動でαω→αω^3→αω^4→αω^2(→元のαωに戻る巡回置換の図)
This is not a geometrical symmetry! Later we will see that for p > 2 a prime number, the solutions to x^p - 2 = 0 have p(p - 1) symmetries.
(P7 Exercise 7 に、この部分が問題として出されている)
追記
余談だが、表紙のサッカーボールの図があり、表紙を開くとP2にこれを交代群A5のCaylayグラフにした見事な図示がある
これは、一見の価値ありです!
(引用終り)

つづく
1-
あと 948 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.019s