[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)12 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
187
(1): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)17:13 ID:cbuR6Msl(16/37) AAS
>>186
?*?
=  (ζ11+ζ11^10)^2       +η^3(ζ11 +ζ11^10)(ζ11^2+ζ11^9)+η (ζ11 +ζ11^10)(ζ11^4+ζ11^7)+η^4(ζ11 +ζ11^10)(ζ11^8+ζ11^3)+η^2(ζ11 +ζ11^10)(ζ11^5+ζ11^6)
+η^3(ζ11^2+ζ11^9)(ζ11+ζ11^10)+η (ζ11^2+ζ11^9)^2       +η^4(ζ11^2+ζ11^9)(ζ11^4+ζ11^7)+η^2(ζ11^2+ζ11^9)(ζ11^8+ζ11^3)+  (ζ11^2+ζ11^9)(ζ11^5+ζ11^6)
+η (ζ11^4+ζ11^7)(ζ11+ζ11^10)+η^4(ζ11^4+ζ11^7)(ζ11^2+ζ11^9)+η^2(ζ11^4+ζ11^7)^2       +  (ζ11^4+ζ11^7)(ζ11^8+ζ11^3)+η^3(ζ11^4+ζ11^7)(ζ11^5+ζ11^6)
+η^4(ζ11^8+ζ11^3)(ζ11+ζ11^10)+η^2(ζ11^8+ζ11^3)(ζ11^2+ζ11^9)+  (ζ11^8+ζ11^3)(ζ11^4+ζ11^7)+η^3(ζ11^8+ζ11^3)^2       +η (ζ11^8+ζ11^3)(ζ11^5+ζ11^6)
+η^2(ζ11^5+ζ11^6)(ζ11+ζ11^10)+  (ζ11^5+ζ11^6)(ζ11^2+ζ11^9)+η^3(ζ11^5+ζ11^6)(ζ11^4+ζ11^7)+η (ζ11^5+ζ11^6)(ζ11^8+ζ11^3)+η^4(ζ11^5+ζ11^6)^2

= (2*(ζ11^7+ζ11^3+ζ11^8+ζ11^4)+2*(ζ11 +ζ11^4+ζ11^7+ζ11^10) +(ζ11^2+ζ11^9+2))
+η^3(2*(ζ11^3+ζ11 +ζ11^10+ζ11^8)+2*(ζ11^9+ζ11 +ζ11^10+ζ11^2) +(ζ11^5+ζ11^6+2))
+η (2*(ζ11^5+ζ11^3+ζ11^8+ζ11^6)+2*(ζ11^2+ζ11^8+ζ11^3+ζ11^9) +(ζ11^4+ζ11^7+2))
省7
188
(2): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)17:14 ID:cbuR6Msl(17/37) AAS
>>187
?*?
=  (ζ11+ζ11^10)^2       +η^4(ζ11 +ζ11^10)(ζ11^2+ζ11^9)+η^3(ζ11 +ζ11^10)(ζ11^4+ζ11^7)+η^2(ζ11 +ζ11^10)(ζ11^8+ζ11^3)+η (ζ11 +ζ11^10)(ζ11^5+ζ11^6)
+η^4(ζ11^2+ζ11^9)(ζ11+ζ11^10)+η^3(ζ11^2+ζ11^9)^2       +η^2(ζ11^2+ζ11^9)(ζ11^4+ζ11^7)+η (ζ11^2+ζ11^9)(ζ11^8+ζ11^3)+  (ζ11^2+ζ11^9)(ζ11^5+ζ11^6)
+η^3(ζ11^4+ζ11^7)(ζ11+ζ11^10)+η^2(ζ11^4+ζ11^7)(ζ11^2+ζ11^9)+η (ζ11^4+ζ11^7)^2       +  (ζ11^4+ζ11^7)(ζ11^8+ζ11^3)+η^4(ζ11^4+ζ11^7)(ζ11^5+ζ11^6)
+η^2(ζ11^8+ζ11^3)(ζ11+ζ11^10)+η (ζ11^8+ζ11^3)(ζ11^2+ζ11^9)+  (ζ11^8+ζ11^3)(ζ11^4+ζ11^7)+η^4(ζ11^8+ζ11^3)^2       +η^3(ζ11^8+ζ11^3)(ζ11^5+ζ11^6)
+η (ζ11^5+ζ11^6)(ζ11+ζ11^10)+  (ζ11^5+ζ11^6)(ζ11^2+ζ11^9)+η^4(ζ11^5+ζ11^6)(ζ11^4+ζ11^7)+η^3(ζ11^5+ζ11^6)(ζ11^8+ζ11^3)+η^2(ζ11^5+ζ11^6)^2

= (2*(ζ11^7+ζ11^3+ζ11^8+ζ11^4)+2*(ζ11 +ζ11^4+ζ11^7+ζ11^10) +(ζ11^2+ζ11^9+2))
+η^4(2*(ζ11^3+ζ11 +ζ11^10+ζ11^8)+2*(ζ11^9+ζ11 +ζ11^10+ζ11^2) +(ζ11^5+ζ11^6+2))
+η^3(2*(ζ11^5+ζ11^3+ζ11^8+ζ11^6)+2*(ζ11^2+ζ11^8+ζ11^3+ζ11^9) +(ζ11^4+ζ11^7+2))
省7
189
(1): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)17:15 ID:cbuR6Msl(18/37) AAS
>>188
?*?
=  (ζ11+ζ11^10)^2       +η (ζ11 +ζ11^10)(ζ11^2+ζ11^9)+η^2(ζ11 +ζ11^10)(ζ11^4+ζ11^7)+η^3(ζ11 +ζ11^10)(ζ11^8+ζ11^3)+η^4(ζ11 +ζ11^10)(ζ11^5+ζ11^6)
+η^2(ζ11^2+ζ11^9)(ζ11+ζ11^10)+η^3(ζ11^2+ζ11^9)^2       +η^4(ζ11^2+ζ11^9)(ζ11^4+ζ11^7)+  (ζ11^2+ζ11^9)(ζ11^8+ζ11^3)+η (ζ11^2+ζ11^9)(ζ11^5+ζ11^6)
+η^4(ζ11^4+ζ11^7)(ζ11+ζ11^10)+  (ζ11^4+ζ11^7)(ζ11^2+ζ11^9)+η (ζ11^4+ζ11^7)^2       +η^2(ζ11^4+ζ11^7)(ζ11^8+ζ11^3)+η^3(ζ11^4+ζ11^7)(ζ11^5+ζ11^6)
+η (ζ11^8+ζ11^3)(ζ11+ζ11^10)+η^2(ζ11^8+ζ11^3)(ζ11^2+ζ11^9)+η^3(ζ11^8+ζ11^3)(ζ11^4+ζ11^7)+η^4(ζ11^8+ζ11^3)^2       +  (ζ11^8+ζ11^3)(ζ11^5+ζ11^6)
+η^3(ζ11^5+ζ11^6)(ζ11+ζ11^10)+η^4(ζ11^5+ζ11^6)(ζ11^2+ζ11^9)+  (ζ11^5+ζ11^6)(ζ11^4+ζ11^7)+η (ζ11^5+ζ11^6)(ζ11^8+ζ11^3)+η^2(ζ11^5+ζ11^6)^2

=  ((ζ11^2+ζ11^9+2)+(ζ11^10+ζ11^6+ζ11^5+ζ11 )+(ζ11^6+ζ11^9+ζ11^2+ζ11^5)+(ζ11^2+ζ11^8+ζ11^3+ζ11^9)+(ζ11^9+ζ11^10+ζ11 +ζ11^2))
+η ((ζ11^8+ζ11^3+2)+(ζ11^3+ζ11 +ζ11^10+ζ11^8)+(ζ11^7+ζ11^3+ζ11^8+ζ11^4)+(ζ11^9+ζ11^4+ζ11^7+ζ11^2)+(ζ11^2+ζ11^3+ζ11^8+ζ11^9))
+η^2((ζ11^10+ζ11 +2)+(ζ11^5+ζ11^3+ζ11^8+ζ11^6)+(ζ11^3+ζ11^10+ζ11 +ζ11^8)+(ζ11 +ζ11^4+ζ11^7+ζ11^10)+(ζ11^10+ζ11^5+ζ11^6+ζ11 ))
省7
190
(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/31(土)17:15 ID:rNlYJ3SK(17/33) AAS
>>181
> 私は中学生でナーゲル・ニューマンの「数学から超数学へ ゲーデルの証明」読んだ

ああ、あったね
その本 (読んでないけど、チラ見した記憶がある)
だが、私のは、その前の出版で、著者は日本人だった
原本は、置き場がないので処分した

> で、自己言及とかいうだけなら誰でもいえるのよ 

いや、違う
”自己言及”が、キモ中のキモだよ
分かってないねw
省23
191
(2): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)17:16 ID:cbuR6Msl(19/37) AAS
>>189
?*?
=  (ζ11+ζ11^10)^2       +η (ζ11 +ζ11^10)(ζ11^2+ζ11^9)+η^2(ζ11 +ζ11^10)(ζ11^4+ζ11^7)+η^3(ζ11 +ζ11^10)(ζ11^8+ζ11^3)+η^4(ζ11 +ζ11^10)(ζ11^5+ζ11^6)
+η^3(ζ11^2+ζ11^9)(ζ11+ζ11^10)+η^4(ζ11^2+ζ11^9)^2       +  (ζ11^2+ζ11^9)(ζ11^4+ζ11^7)+η (ζ11^2+ζ11^9)(ζ11^8+ζ11^3)+η^2(ζ11^2+ζ11^9)(ζ11^5+ζ11^6)
+η (ζ11^4+ζ11^7)(ζ11+ζ11^10)+η^2(ζ11^4+ζ11^7)(ζ11^2+ζ11^9)+η^3(ζ11^4+ζ11^7)^2       +η^4(ζ11^4+ζ11^7)(ζ11^8+ζ11^3)+  (ζ11^4+ζ11^7)(ζ11^5+ζ11^6)
+η^4(ζ11^8+ζ11^3)(ζ11+ζ11^10)+  (ζ11^8+ζ11^3)(ζ11^2+ζ11^9)+η (ζ11^8+ζ11^3)(ζ11^4+ζ11^7)+η^2(ζ11^8+ζ11^3)^2       +η^3(ζ11^8+ζ11^3)(ζ11^5+ζ11^6)
+η^2(ζ11^5+ζ11^6)(ζ11+ζ11^10)+η^3(ζ11^5+ζ11^6)(ζ11^2+ζ11^9)+η^4(ζ11^5+ζ11^6)(ζ11^4+ζ11^7)+  (ζ11^5+ζ11^6)(ζ11^8+ζ11^3)+η (ζ11^5+ζ11^6)^2

=  ((ζ11^2+ζ11^9+2)+(ζ11^6+ζ11^2+ζ11^9+ζ11^5)+(ζ11^9+ζ11 +ζ11^10+ζ11^2)+(ζ11^10+ζ11^5+ζ11^6+ζ11 )+(ζ11^2+ζ11^3+ζ11^8+ζ11^9))
+η ((ζ11^10+ζ11 +2)+(ζ11^3+ζ11 +ζ11^10+ζ11^8)+(ζ11^10+ζ11^6+ζ11^5+ζ11 )+(ζ11^5+ζ11^8+ζ11^3+ζ11^6)+(ζ11 +ζ11^7+ζ11^4+ζ11^10))
+η^2((ζ11^5+ζ11^6+2)+(ζ11^5+ζ11^3+ζ11^8+ζ11^6)+(ζ11^7+ζ11^3+ζ11^8+ζ11^4)+(ζ11^6+ζ11^9+ζ11^2+ζ11^5)+(ζ11^6+ζ11^7+ζ11^4+ζ11^5))
省7
192
(2): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)17:16 ID:cbuR6Msl(20/37) AAS
>>191
?*?
=  (ζ11+ζ11^10)^2       +η^2(ζ11 +ζ11^10)(ζ11^2+ζ11^9)+η^4(ζ11 +ζ11^10)(ζ11^4+ζ11^7)+η (ζ11 +ζ11^10)(ζ11^8+ζ11^3)+η^3(ζ11 +ζ11^10)(ζ11^5+ζ11^6)
+η^4(ζ11^2+ζ11^9)(ζ11+ζ11^10)+η (ζ11^2+ζ11^9)^2       +η^3(ζ11^2+ζ11^9)(ζ11^4+ζ11^7)+  (ζ11^2+ζ11^9)(ζ11^8+ζ11^3)+η^2(ζ11^2+ζ11^9)(ζ11^5+ζ11^6)
+η^3(ζ11^4+ζ11^7)(ζ11+ζ11^10)+  (ζ11^4+ζ11^7)(ζ11^2+ζ11^9)+η^2(ζ11^4+ζ11^7)^2       +η^4(ζ11^4+ζ11^7)(ζ11^8+ζ11^3)+η (ζ11^4+ζ11^7)(ζ11^5+ζ11^6)
+η^2(ζ11^8+ζ11^3)(ζ11+ζ11^10)+η^4(ζ11^8+ζ11^3)(ζ11^2+ζ11^9)+η (ζ11^8+ζ11^3)(ζ11^4+ζ11^7)+η^3(ζ11^8+ζ11^3)^2       +  (ζ11^8+ζ11^3)(ζ11^5+ζ11^6)
+η (ζ11^5+ζ11^6)(ζ11+ζ11^10)+η^3(ζ11^5+ζ11^6)(ζ11^2+ζ11^9)+  (ζ11^5+ζ11^6)(ζ11^4+ζ11^7)+η^2(ζ11^5+ζ11^6)(ζ11^8+ζ11^3)+η^4(ζ11^5+ζ11^6)^2

=  ((ζ11^2+ζ11^9+2)+(ζ11 +ζ11^10+ζ11^5+ζ11^6)+(ζ11^2+ζ11^9+ζ11^5+ζ11^6)+(ζ11^2+ζ11^9+ζ11^8+ζ11^3)+(ζ11 +ζ11^10+ζ11^2+ζ11^9))
+η ((ζ11^4+ζ11^7+2)+(ζ11^2+ζ11^9+ζ11^4+ζ11^7)+(ζ11 +ζ11^10+ζ11^2+ζ11^9)+(ζ11 +ζ11^10+ζ11^4+ζ11^7)+(ζ11^4+ζ11^7+ζ11^5+ζ11^6))
+η^2((ζ11^8+ζ11^3+2)+(ζ11 +ζ11^10+ζ11^8+ζ11^3)+(ζ11^4+ζ11^7+ζ11^8+ζ11^3)+(ζ11^2+ζ11^9+ζ11^4+ζ11^7)+(ζ11^2+ζ11^9+ζ11^8+ζ11^3))
省7
193
(2): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)17:18 ID:cbuR6Msl(21/37) AAS
>>192
?*?
=  (ζ11+ζ11^10)^2       +η^3(ζ11 +ζ11^10)(ζ11^2+ζ11^9)+η (ζ11 +ζ11^10)(ζ11^4+ζ11^7)+η^4(ζ11 +ζ11^10)(ζ11^8+ζ11^3)+η^2(ζ11 +ζ11^10)(ζ11^5+ζ11^6)
+η^4(ζ11^2+ζ11^9)(ζ11+ζ11^10)+η^2(ζ11^2+ζ11^9)^2       +  (ζ11^2+ζ11^9)(ζ11^4+ζ11^7)+η^3(ζ11^2+ζ11^9)(ζ11^8+ζ11^3)+η (ζ11^2+ζ11^9)(ζ11^5+ζ11^6)
+η^3(ζ11^4+ζ11^7)(ζ11+ζ11^10)+η (ζ11^4+ζ11^7)(ζ11^2+ζ11^9)+η^4(ζ11^4+ζ11^7)^2       +η^2(ζ11^4+ζ11^7)(ζ11^8+ζ11^3)+  (ζ11^4+ζ11^7)(ζ11^5+ζ11^6)
+η^2(ζ11^8+ζ11^3)(ζ11+ζ11^10)+  (ζ11^8+ζ11^3)(ζ11^2+ζ11^9)+η^3(ζ11^8+ζ11^3)(ζ11^4+ζ11^7)+η (ζ11^8+ζ11^3)^2       +η^4(ζ11^8+ζ11^3)(ζ11^5+ζ11^6)
+η (ζ11^5+ζ11^6)(ζ11+ζ11^10)+η^4(ζ11^5+ζ11^6)(ζ11^2+ζ11^9)+η^2(ζ11^5+ζ11^6)(ζ11^4+ζ11^7)+  (ζ11^5+ζ11^6)(ζ11^8+ζ11^3)+η^3(ζ11^5+ζ11^6)^2

=  ((ζ11^2+ζ11^9+2)+(ζ11^2+ζ11^9+ζ11^5+ζ11^6)+(ζ11 +ζ11^10+ζ11^2+ζ11^9)+(ζ11 +ζ11^10+ζ11^5+ζ11^6)+(ζ11^2+ζ11^9+ζ11^8+ζ11^3))
+η ((ζ11^5+ζ11^6+2)+(ζ11^8+ζ11^3+ζ11^5+ζ11^6)+(ζ11^4+ζ11^7+ζ11^8+ζ11^3)+(ζ11^2+ζ11^9+ζ11^5+ζ11^6)+(ζ11^4+ζ11^7+ζ11^5+ζ11^6))
+η^2((ζ11^4+ζ11^7+2)+(ζ11^4+ζ11^7+ζ11^5+ζ11^6)+(ζ11 +ζ11^10+ζ11^4+ζ11^7)+(ζ11^2+ζ11^9+ζ11^4+ζ11^7)+(ζ11 +ζ11^10+ζ11^2+ζ11^9))
省7
194
(2): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)17:20 ID:cbuR6Msl(22/37) AAS
>>193
?*?
=  (ζ11+ζ11^10)^2       +η (ζ11 +ζ11^10)(ζ11^2+ζ11^9)+η^2(ζ11 +ζ11^10)(ζ11^4+ζ11^7)+η^3(ζ11 +ζ11^10)(ζ11^8+ζ11^3)+η^4(ζ11 +ζ11^10)(ζ11^5+ζ11^6)
+η^4(ζ11^2+ζ11^9)(ζ11+ζ11^10)+  (ζ11^2+ζ11^9)^2       +η (ζ11^2+ζ11^9)(ζ11^4+ζ11^7)+η^2(ζ11^2+ζ11^9)(ζ11^8+ζ11^3)+η^3(ζ11^2+ζ11^9)(ζ11^5+ζ11^6)
+η^3(ζ11^4+ζ11^7)(ζ11+ζ11^10)+η^4(ζ11^4+ζ11^7)(ζ11^2+ζ11^9)+  (ζ11^4+ζ11^7)^2       +η (ζ11^4+ζ11^7)(ζ11^8+ζ11^3)+η^2(ζ11^4+ζ11^7)(ζ11^5+ζ11^6)
+η^2(ζ11^8+ζ11^3)(ζ11+ζ11^10)+η^3(ζ11^8+ζ11^3)(ζ11^2+ζ11^9)+η^4(ζ11^8+ζ11^3)(ζ11^4+ζ11^7)+  (ζ11^8+ζ11^3)^2       +η (ζ11^8+ζ11^3)(ζ11^5+ζ11^6)
+η (ζ11^5+ζ11^6)(ζ11+ζ11^10)+η^2(ζ11^5+ζ11^6)(ζ11^2+ζ11^9)+η^3(ζ11^5+ζ11^6)(ζ11^4+ζ11^7)+η^4(ζ11^5+ζ11^6)(ζ11^8+ζ11^3)+  (ζ11^5+ζ11^6)^2

=  (ζ11^2+ζ11^9+ζ11^4+ζ11^7+ζ11^8+ζ11^3+ζ11^5+ζ11^6+ζ11+ζ11+10)
+η ((ζ11^3+ζ11 +ζ11^10+ζ11^8)+(ζ11^6+ζ11^2+ζ11^9+ζ11^5)+(ζ11 +ζ11^4+ζ11^7+ζ11^10)+(ζ11^2+ζ11^8+ζ11^3+ζ11^9)+(ζ11^6+ζ11^7+ζ11^4+ζ11^5))
+η^2((ζ11^5+ζ11^3+ζ11^8+ζ11^6)+(ζ11^10+ζ11^6+ζ11^5+ζ11 )+(ζ11^9+ζ11 +ζ11^10+ζ11^2)+(ζ11^9+ζ11^4+ζ11^7+ζ11^2)+(ζ11^7+ζ11^8+ζ11^3+ζ11^4))
省6
195
(1): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)17:20 ID:cbuR6Msl(23/37) AAS
>>194
?*?
=  (ζ11+ζ11^10)^2       +η^2(ζ11 +ζ11^10)(ζ11^2+ζ11^9)+η^4(ζ11 +ζ11^10)(ζ11^4+ζ11^7)+η (ζ11 +ζ11^10)(ζ11^8+ζ11^3)+η^3(ζ11 +ζ11^10)(ζ11^5+ζ11^6)
+η^3(ζ11^2+ζ11^9)(ζ11+ζ11^10)+  (ζ11^2+ζ11^9)^2       +η^2(ζ11^2+ζ11^9)(ζ11^4+ζ11^7)+η^4(ζ11^2+ζ11^9)(ζ11^8+ζ11^3)+η (ζ11^2+ζ11^9)(ζ11^5+ζ11^6)
+η (ζ11^4+ζ11^7)(ζ11+ζ11^10)+η^3(ζ11^4+ζ11^7)(ζ11^2+ζ11^9)+  (ζ11^4+ζ11^7)^2       +η^2(ζ11^4+ζ11^7)(ζ11^8+ζ11^3)+η^4(ζ11^4+ζ11^7)(ζ11^5+ζ11^6)
+η^4(ζ11^8+ζ11^3)(ζ11+ζ11^10)+η (ζ11^8+ζ11^3)(ζ11^2+ζ11^9)+η^3(ζ11^8+ζ11^3)(ζ11^4+ζ11^7)+  (ζ11^8+ζ11^3)^2       +η^2(ζ11^8+ζ11^3)(ζ11^5+ζ11^6)
+η^2(ζ11^5+ζ11^6)(ζ11+ζ11^10)+η^4(ζ11^5+ζ11^6)(ζ11^2+ζ11^9)+η (ζ11^5+ζ11^6)(ζ11^4+ζ11^7)+η^3(ζ11^5+ζ11^6)(ζ11^8+ζ11^3)+  (ζ11^5+ζ11^6)^2

=  (ζ11^2+ζ11^9+ζ11^4+ζ11^7+ζ11^8+ζ11^3+ζ11^5+ζ11^6+ζ11+ζ11+10)
+η^2((ζ11^3+ζ11 +ζ11^10+ζ11^8)+(ζ11^6+ζ11^2+ζ11^9+ζ11^5)+(ζ11 +ζ11^4+ζ11^7+ζ11^10)+(ζ11^2+ζ11^8+ζ11^3+ζ11^9)+(ζ11^6+ζ11^7+ζ11^4+ζ11^5))
+η^4((ζ11^5+ζ11^3+ζ11^8+ζ11^6)+(ζ11^10+ζ11^6+ζ11^5+ζ11 )+(ζ11^9+ζ11 +ζ11^10+ζ11^2)+(ζ11^9+ζ11^4+ζ11^7+ζ11^2)+(ζ11^7+ζ11^8+ζ11^3+ζ11^4))
省6
196
(2): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)17:27 ID:cbuR6Msl(24/37) AAS
>>190
>>自己言及とかいうだけなら誰でもいえるのよ 
> いや、違う
> ”自己言及”が、キモ中のキモだよ
> 分かってないねw
  ちっちっち、分かってないねw
  残念ながら、自己言及なしのゲーデルの不完全性定理もあるんだな
  キーワードは Yablo の逆理ね
  ま、自己言及の代わりに無限個の文の連なりを使ってるだけだけどw

https://www.jstage.jst.go.jp/article/kisoron/38/2/38_KJ00007475728/_pdf/-char/ja
197: わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)17:28 ID:cbuR6Msl(25/37) AAS
>>196
ま、自己言及の逆理が「リング」ならヤブローの逆理は「らせん」かな
(ホラーかいw)
198
(1): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)17:33 ID:cbuR6Msl(26/37) AAS
ところで 1=雑談クン
>>183-195(除く190)
は読んでくれたかな?

おまけ
https://www.youtube.com/watch?v=EpshiYdGrZo&ab_channel=%E3%81%B4%E3%82%8B%E3%81%82%E3%81%BD%E3%81%A1%E3%82%83%E3%82%93
199: わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)17:38 ID:cbuR6Msl(27/37) AAS
>>198 おまけの注釈

・オフショアガールは「大まいやん様」こと白石麻衣のソロ曲
https://www.youtube.com/watch?v=PyQAYqEbkEo&ab_channel=%E4%B9%83%E6%9C%A8%E5%9D%8246OFFICIALYouTubeCHANNEL
・まなったんこと秋元真夏は超絶音痴
・そして、まいやんとまなったんは実は誕生日が同じ(齢はまいやんが1つ上)
200
(1): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)17:51 ID:cbuR6Msl(28/37) AAS
>>180
>あんた「群と作用」で逃げているよね
>群の作用を論じるならば、
>群Gと作用域Λ
>最低限この2つを定義してね
>と、私が指摘した

>>182
>群Gと作用域Λで思い出すのは、
>岩波全書の高等代数学1 秋月康夫・鈴木通夫 著
>これが、ほぼ冒頭から、”作用域を持つ群”で始まってね
省20
201: わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)18:00 ID:cbuR6Msl(29/37) AAS
数は、群と作用域が同じだから、分かりにくい

例えば「掛け算をひっくり返すな」というのは
実は、a×b=cの、aとbを、
それぞれ作用域と群と考えてる、
といってもいいw

2個/1つあたり×3つ=6個

この場合、個で表されるほうが作用域だな

ま、こんな説明すると、某氏に怒られそうだがw
202: わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)18:06 ID:cbuR6Msl(30/37) AAS
(Z/pZ)× でキモチワルイ(?)のは
例えばn倍を(p-1)回繰り返すと
1倍になっちゃうこと

例えば(Z/5Z)× で2倍を4回繰り返すと1倍になる

え?16倍じゃないのって?
違うんですわ~
円全体じゃなく5等分点しか見ないから
OKなんですわ~
203
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/31(土)18:15 ID:rNlYJ3SK(18/33) AAS
>>183
>(η=ζ5=ζ11^2 ζ11=-η^3 ζ11^10=-η^2)

ここ大丈夫か?
ζ5=e^2πi/5
ζ11=e^2πi/11
だろ?
204
(1): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)18:22 ID:cbuR6Msl(31/37) AAS
>>203
いいところに気がつきましたね…ただの凡ミスですけどw

誤 (η=ζ5=ζ11^2 ζ11=-η^3 ζ11^10=-η^2)
正 (η=ζ5=ζ10^2 ζ10=-η^3 ζ10^9=-η^2)

要するに、10乗根を5乗根で表せるとコメントしただけ
計算には全く影響ありません(ビシッ)
205
(1): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2022/12/31(土)18:25 ID:cbuR6Msl(32/37) AAS
ということで
>>183の訂正

n=11 X^11-1=(X-1)(X^10+X^9+X^8+X^7+X^6+X^5+X^4+X^3+X^2+X+1)

ラグランジュ分解式
ζ11+  ζ11^2+  ζ11^4+  ζ11^8+  ζ11^5+ζ11^10+  ζ11^9+  ζ11^7+  ζ11^3+  ζ11^6 ?
ζ11-η^3ζ11^2+η ζ11^4-η^4ζ11^8+η^2ζ11^5-ζ11^10+η^3ζ11^9-η ζ11^7+η^4ζ11^3-η^2ζ11^6 ?
ζ11+η ζ11^2+η^2ζ11^4+η^3ζ11^8+η^4ζ11^5+ζ11^10+η ζ11^9+η^2ζ11^7+η^3ζ11^3+η^4ζ11^6 ?
ζ11-η^4ζ11^2+η^3ζ11^4-η^2ζ11^8+η ζ11^5-ζ11^10+η^4ζ11^9-η^3ζ11^7+η^2ζ11^3-η ζ11^6 ?
ζ11+η^2ζ11^2+η^4ζ11^4+η ζ11^8+η^3ζ11^5+ζ11^10+η^2ζ11^9+η^4ζ11^7+η ζ11^3+η^3ζ11^6 ?
ζ11-  ζ11^2+  ζ11^4-  ζ11^8+  ζ11^5-ζ11^10+  ζ11^9-  ζ11^7+  ζ11^3-  ζ11^6 ?
省10
206
(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2022/12/31(土)18:38 ID:rNlYJ3SK(19/33) AAS
>>200
>群も作用域もわからん人が、何をブチ切れてるんだか
>作用域ってのは

ふっ、>>182で何を誤解しえいるのかな?
岩波全書の高等代数学1 秋月康夫・鈴木通夫 著を読んだのは、
高校だったか大学1年だったか忘れたけど
ともかく、大学レベルの代数学で読んだ最初の本だった
なので、この本は当時の選択として間違っていてと思う
その後、別の本を何冊か読んだけど、”作用域を持つ群”については、徐々に分かってきた
だから、前スレでずばり指摘をしたんだ
省29
1-
あと 796 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s