[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)12 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
148(8): 2022/12/31(土)06:25 ID:3jK34k/w(1/10) AAS
ラグランジュ分解式を指標和と考えるメリット?
ポントリャーギン双対として統一的な理解が得られる。
https://ja.wikipedia.org/wiki/%E3%83%9D%E3%83%B3%E3%83%88%E3%83%AA%E3%83%A3%E3%83%BC%E3%82%AE%E3%83%B3%E5%8F%8C%E5%AF%BE
前スレに書いた、「巡回方程式のべき根表示=フーリエ級数展開の類似」
も、ほぼもろに書いてありますね。
>・有限アーベル群上の複素数値函数はその(もとの群と自然同型ではないが同型な)
>双対群上の函数としての離散フーリエ変換>を持ち、有限群上の任意の函数が
>その離散フーリエ変換から復元することができる。
これは、
「ガロア群G∋σに対して、θ(σ)=σ(θ)(θへのσの作用)をG上の函数とみなす」
省4
上下前次1-新書関写板覧索設栞歴
あと 854 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.021s