[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)12 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
432: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/01/06(金)07:56 ID:9sWh0IFW(2/5) AAS
>>429 補足
構成主義的視点では、時枝の手法の99/100は、計算可能性の面から否定されるってことかな?w (下記ご参照)
https://ja.wikipedia.org/wiki/%E6%A7%8B%E6%88%90%E4%B8%BB%E7%BE%A9_(%E6%95%B0%E5%AD%A6)
構成主義 (数学)
構成主義(こうせいしゅぎ、英: constructivism)とは、「ある数学的対象が存在することを証明するためには、それを実際に見つけたり構成したりしなければならない」という考えのことである。標準的な数学においてはそうではなく、具体的に見つけることなしに背理法によって存在を示す、すなわち存在しないことを仮定して矛盾を導くことがよくある。この背理法というものは構成的に見ると十分ではない。構成的な見地は、古典的な解釈をもって中途半端なままである、存在記号の意味を確かめることを含む。
多くの形の構成主義がある[1]。これらはブラウワーによって創始された直観主義のプログラム、ヒルベルトならびにベルナイスの有限主義(英語版)、Shamin(英語版)ならびにMarkov(英語版)の構成的で再帰的な数学、そして構成的解析学(英語版)であるBishop(英語版)のプログラムを含む。構成主義はCZF(英語版)やトポス論の研究のような構成的集合論(英語版)の研究もまた含む。
構成主義はしばしば直観主義と同一視される、しかしながら直観主義は構成主義者のプログラムのひとつでしかない。個人的な数学者の直観のなかに数学の基礎がおかれるところの直観主義数学は、それによってひとつの内在的で主観的な活動のなかへと数学をさせている[2]。他の形の構成主義は直観のこの見地において基礎をもたない、そして数学において客観的な見地をもって両立できる。
関連項目
・計算可能性理論
https://en.wikipedia.org/wiki/Constructivism_(philosophy_of_mathematics)
省13
433(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/01/06(金)10:55 ID:Rz0bnGW9(1) AAS
>>426 補足
・この意図は、フーリエ変換(離散を含める。以下同様)を、つつこう といういうこと
・例えば、フーリエ変換理論で、クロネッカー・ウェーバーの別証明が得られるとかできれば、面白いけどねw
別証明できないよね?w
(別証明でなくとも、フーリエ変換理論で、クロネッカー・ウェーバー証明の見通しが良くなるなら、示してほしいw)
・フーリエ変換して? さらに逆変換?
元に戻るだけでしょ?
・元に戻るときに、「べき根表示が一挙に得られるという話」?>>339
実現できれば、面白いよね
出来なければ、与太話だよねw
434: わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2023/01/06(金)19:47 ID:0spBLukI(1/3) AAS
御無沙汰してます
おととい、きのう、きょうと、「半乃木坂方程式」
(x^23-1)/(x-1)=0 (23は46の半分だから、笑)
を解く目的で、EXCELを作成してました
中身は、mod11の加算表と、これを利用した多項式の計算
といっても指数のところだけだから完全に算数
しかしこれで完全に用が足りますね
頭を全く使わない人は何も考えずに
ラグランジュの分解式の11乗を
計算しようとするんでしょうけど
省17
435(4): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2023/01/06(金)19:59 ID:0spBLukI(2/3) AAS
>>433
>フーリエ変換(離散を含める)を、つつこう
>例えば、フーリエ変換理論で、
>クロネッカー・ウェーバーの別証明が得られるとかできれば、
>面白いけどね、別証明できないよね?
>・フーリエ変換して? さらに逆変換?元に戻るだけでしょ?
>・元に戻るときに、「べき根表示が一挙に得られるという話」?
>実現できれば、面白いよね 出来なければ、与太話だよね
この本知ってる?
フーリエ解析の序章
省26
436(7): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/01/06(金)20:52 ID:9sWh0IFW(3/5) AAS
>>435
(引用開始)
この本知ってる?
フーリエ解析の序章
https://www.sugakushobo.co.jp/903342_49_mae.html
杉山健一 著
A5判・並製・176頁・定価2300円+税
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
理論・応用を問わず様々な分野で有用であるFourier解析学の入門書.
理論だけではFourier変換の威力が実感されないので,
省29
437(1): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2023/01/06(金)21:17 ID:0spBLukI(3/3) AAS
>>436
自分でやってごらん
438(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/01/06(金)23:05 ID:9sWh0IFW(4/5) AAS
>>437
おれは、出来ないでしょう
と言っているんだがねwwwww
439(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/01/06(金)23:28 ID:9sWh0IFW(5/5) AAS
>>438 補足
(引用開始)
また理論だけではFourier変換の威力が実感されないので,
以下の分野への 応用を解説した.
(1)(整数論)Gauss和とJacobi和,平方剰余の相互法則,有限体上定義さ れたFermat曲線の有理点の個数の数え上げ,Eulerの等式(ゼータ関数の特 殊値).
(2)(幾何学)離散等周問題,等周問題.
(3)(解析学)線型微分方程式,Weierstraussの多項式近似定理.
(4)(物理学)(離散)不確定性原理
(5)(工学)CT(Computer Tomography),Digital samplingの理論.
(引用終り)
省15
440(2): 2023/01/07(土)05:25 ID:sAXj3/yk(1/3) AAS
ヤコビ和って明らかにフーリエ変換における
「畳み込み」の形になっているのだけど
それは「加法群の元での」それになっている。
振り返ってガウス和の定義を見てみると
https://ja.wikipedia.org/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E5%92%8C
加法指標と乗法指標の組み合わさったものになっている。
それに応じてフーリエ変換といっても、少なくとも2通りの見方が可能。
一つ目。
乗法指標を「函数」とみなして、加法群のもとでフーリエ変換する
→ガウス和があらわれる。
省7
441(1): 2023/01/07(土)05:32 ID:sAXj3/yk(2/3) AAS
フーリエ解析と数論が深い関係にあることは専門家の間では常識。
「フーリエ解析(調和解析)と数論」で検索してみれば
多くの論文や洋書が出てくるはず。
ジョン・テイトの学位論文の標題が
"Fourier analysis in number fields and Hecke's zeta functions"
これは今で言う「岩澤-テイトの方法」に関するもの。
単にガウス和でも2通りのフーリエ変換があるということは
他の分野でも「隠れた対称性」があっても不思議はない。
数学における未解決問題というのは、結局そのような
未知の対称性を探しているのかもしれない。
442(2): 2023/01/07(土)05:38 ID:sAXj3/yk(3/3) AAS
1=雑談氏は「意固地なお爺ちゃん」状態に陥っている。
関わってもこっちまで頭が悪くなりそうだから、放っておこう...w
443(1): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2023/01/07(土)06:56 ID:JasS3zz2(1/20) AAS
>>440
ガウスの弟子^nさん おはようございます
>ガウス和の定義を見てみると
>加法指標と乗法指標の組み合わさったものになっている。
>それに応じてフーリエ変換といっても、少なくとも2通りの見方が可能。
>(略)
>二つ目。
>わたしとわかるすうがく氏が「再発見」した見方。
>ζ_pを乗法群のもとでフーリエ変換する
>→ガウス和=べき根があらわれる。
省8
444: わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2023/01/07(土)07:03 ID:JasS3zz2(2/20) AAS
>>439
1が「落ちこぼれ0号」(つまり大学数学での落ちこぼれ)であることは間違いない
私はせいぜい数学科の数学の落ちこぼれなのでw
ガウスの弟子^nさんは、何者か知らないので言及しませんが
少なくとも整数論についてはよく理解してらっしゃるといっときます
ま、私ごとき落ちこぼれが言っても何言ってんだコイツって感じですがぁw
445: わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2023/01/07(土)07:11 ID:JasS3zz2(3/20) AAS
>>443
tsujimotter氏が、過去に
「ガウス和の p 乘が τ_q^p = Σ_{t=1}^{q-1} J_t ζ^t と書ける」
とtweetしてますが、これが何についての話なのかはちょっとよくわからない
代数方程式の解法ではないようだが
https://twitter.com/tsujimotter/status/1265650665088380928
https://twitter.com/tsujimotter/status/1440672534492373000
https://twitter.com/5chan_nel (5ch newer account)
446(2): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2023/01/07(土)07:20 ID:JasS3zz2(4/20) AAS
子葉氏の記事
https://mathlog.info/articles/3161
と、その元ネタの亀井氏の文書
http://www1.kcn.ne.jp/~mkamei/math/11th_root.pdf
を読むかぎり、2人ともガウス和、ヤコビ和とはいってないけど
それと分かってて計算してると思われる
ちなみに亀井氏は
求めたラグランジュ分解式のベキによって
他のラグランジュ分解式の値を表すことで
偏角問題を解決してますね(p8−p9)
省1
447: わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2023/01/07(土)07:44 ID:JasS3zz2(5/20) AAS
>>438
>おれは、出来ないでしょう
うん、大学1年の数学で落ちこぼれた1は、今のままではできないね
分かってる人はみなできるけど
円分多項式なら、ボクがやったし
年末に投稿した>>183-195を解読すれば
どうやればいいか分かるよ
じゃ、頑張って
何がどう分からないか尋ねてくれれば
タダで教えてあげるよ
省1
448(1): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2023/01/07(土)07:50 ID:JasS3zz2(6/20) AAS
数学っていうけど、実際やってる計算は算数なんだよね
(mod pとかいったって、結局余りの計算だから小学生でもできる)
微分積分なんて全然使ってないし(使う場面がない)
n乗根をとる、っていったって、結局やってることは
√のマーク書いて、その左に小さくnって書くだけじゃん
実際に数値を求めるわけでもない その意味でも算数
(まあ、数値を求めるのも算数っちゃあ算数だけどw)
449(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/01/07(土)07:55 ID:HhX3LrOu(1/18) AAS
>>442
落ちこぼれ2号さん
レスありがとう
> 1=雑談氏は「意固地なお爺ちゃん」状態に陥っている。
>関わってもこっちまで頭が悪くなりそうだから、放っておこう...w
あらら
ケンカ売ってきたのは、あなたの方ですよww
1)落ちこぼれ2号の>>251
「(今で言うフーリエ逆変換を取れば)アーベル方程式の根θの
べき根表示が一挙に得られるという話。」
省15
450: わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2023/01/07(土)08:01 ID:JasS3zz2(7/20) AAS
>>442
1こと雑談君の正体は、
「数学に関する知識をひけらかして他人にマウントしたがる”マウントヒヒ”」
でも実際の理解度は実に低いといわざるを得ない
正則行列知らないくらいだから
多分行列式は分かってないね 定義だけしか知らない
なんで行列式が0でないと逆行列が存在するのかは知らない
451(1): わかるすうがく 近谷蒙 ◆nSGM2Czuyoqf 2023/01/07(土)08:07 ID:JasS3zz2(8/20) AAS
>>449
>ケンカ売ってきたのは、あなたの方ですよ
そもそも11年前、何も分かってないのに
ドヤ顔でガロア理論のスレ立てて
数学板の全読者に宣戦布告したのは
1ですが、お忘れですか
そこから今まで、ラグランジュ分解式の使い方も全然分からないまま
そりゃガロア理論とかいう以前 10代のガウスにも届いてない
18世紀まで来てないな せいぜい17世紀だな
>満月を見て、「月にうさぎ が、いる」と思ったんだね
省2
上下前次1-新書関写板覧索設栞歴
あと 551 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.022s