[過去ログ] 純粋・応用数学(含むガロア理論)8 (942レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
162(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2021/05/19(水)07:54:45.62 ID:H7LP/xSH(3/15) AAS
>>161
つづき
じゃあ逆向きも示していきます.
選択公理から整列定理を導くのは少し長かったけど,逆はわりとスッキリ示せます.
(整列可能定理⇒選択公理の証明)
任意の非空集合族{Xα|α∈A}を考える.
整列可能定理を用いて∪α∈A Xαに整列順序を入れる.
すると,各α∈AでXαは最小元mαを持つ.
そこで,写像φ:A→∪α Xαをφ(α)=mα(∀α∈A)で定める.
するとこのφが選択関数となっている.■
省3
180(1): 2021/05/19(水)15:27:33.62 ID:F1LMOWa6(6/13) AAS
>>178
関連補足
https://ja.wikipedia.org/wiki/%E3%83%A2%E3%82%B9%E3%83%88%E3%83%95%E3%82%B9%E3%82%AD%E5%B4%A9%E5%A3%8A%E8%A3%9C%E9%A1%8C
モストフスキ崩壊補題
概要
RをクラスX上の二項関係で以下の3条件を満たすものとする。
・Rは集合状すなわち: R-1[x] = {y : y R x}が必ず集合になる。
・Rは整礎的である。すなわち: 空でないXの部分集合SはR-極小要素を持つ。(言いかえると、R-1[x] ∩ Sが空となるようなx ∈ Sがあるということ。)
・Rは外延的である。すなわち:Xの異なる二元x,yについて必ず、R-1[x] ≠ R-1[y]
モストフスキ崩壊補題はこのようなRに対して、推移的クラス(真のクラスでもよい)M で(M,∈)と(X, R)が同型となるものが一意的に存在し、その同型対応も一意的であるという命題である。その同型対応Gは G(x)={G(y):yRx}で与えられる。この関数をモストフスキ崩壊関数という。(Jech 2003:69).
省6
543: 2021/05/27(木)18:13:06.62 ID:l2D1bgDZ(13/16) AAS
>>539
>時枝記事否定派のAlexander Pruss先生とTony Huynhの二人の数学DRが、縷々説明するも、
>測度論に詳しくないDenis氏は、「最後まで理解できなかった」(測度論に無知と見た)というのがオチです
サルの妄想には何の根拠もありません。
こちらは妄想ザルと違いエビデンスを示します。
Pruss「we win with probability at least (n-1)/n. That's right.」
サルはサル山へ帰れ
692: 2021/05/31(月)16:39:36.62 ID:50J4z65h(10/21) AAS
>>691
>1∈2∈3∈・・∈∃n∈ω は
>ある自然数nが存在して
>1∈2∈3∈・・∈n∈ω を満たす
>という意味だよ?
そんな使い方はしないから
ちゃんと論理学の本読んで勉強してね
読まずに自己流で使用すると、
チョソンみたいになっちゃうよw
743(2): 2021/06/01(火)18:50:58.62 ID:sQGRXvx5(8/9) AAS
>>742
別にだれかを説得しようとか
説得力を持たせようとか
考えてない
単なるメモ帳さ
ここは、おれのね
785: 2021/06/04(金)09:18:36.62 ID:JmkCUZe2(2/11) AAS
>>784
>ωは、下記の集積点あるいは極限点として、理解すべきものです
>サルには、難しい概念です
「>列」は、「>」の左右の項が必ず存在する列
🐒どころか🐕🐈でも分かるレベルですが
そもそも哺乳類でない🐓のチョソンには無理みたいですwwwwwww
826(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2021/06/05(土)11:13:44.62 ID:x/tRPFwH(10/20) AAS
>>825
追加参考
渕野語録:「厳密性を数学と取りちがえるという勘違いは,
たとえば数学教育などで蔓延している可能性もあるので,
ここに明言しておく必要があるように思える」(下記)
2chスレ:math
15現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/06/06(木) 23:23:21.46ID:2NTuckfC
(引用開始)
スレ24 2chスレ:math
(抜粋)
省20
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.042s