[過去ログ] 面白い問題おしえて〜な 28問目 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
153
(1): 2018/11/10(土)05:35 ID:EuCYu9xA(1/6) AAS
>>150
こっちの方はできたかな?

RをQ[√2]の整数環とする。
p≡3.5 (mod 8)である素数をとる。
x^2 - 2 = 0は mod p で解を持たないからQ/Zのpの拡大次数は2でpRはRの素イデアル。
とくにa+b√2∈p^iR ⇔ a∈p^iZ かつ b∈p^iZ である。
ここで n をR/p^2Rの乗法群の位数とするとき(1+√2)^n ≡ 1 (mod p^2R)であるからa≡1 (mod p^2) かつ b≡0 (mod p^2)である。
とくにこのとき rad b ≦ b/p であるから rad b / b ≦ 1/p となる。
p≡3.5 (mod 8)である素数は無数にあるから主張は示された。
154: 2018/11/10(土)05:45 ID:EuCYu9xA(2/6) AAS
あれ?素数取り直す必要ないか。
R/3^iRの乗法群の位数をnとすれば(1+√2)^n = a + b√2 とおくとき同様にしてb ≡ 0 (mod 3^i)だから
b / rad b ≦ 1/3^(i-1)でいいのか。
156: 2018/11/10(土)05:59 ID:EuCYu9xA(3/6) AAS
ありゃ?とすると代数的整数論のテクニック使う必要すらないや。
(1+√2)^(8・3^(i-1)) = a[i] + b[i]√2 とおいて a[i] ≡ 1 (mod 3^i)、b[i] ≡ 0 (mod 3^i) を帰納法で示せばいいだけだ。
157: 2018/11/10(土)06:01 ID:EuCYu9xA(4/6) AAS
あ、奇数っていう制限もあるのか。
159
(1): 2018/11/10(土)06:31 ID:EuCYu9xA(5/6) AAS
>>155
とりあえず代数的整数論つかえば n が奇数もクリアできた。
p ≡ 3、5 (mod 8)にとっておけば p^2 ≡ 9 (mod 16)なのでRの乗法群の位数は16で割り切れない。
とくに 1+√2 + pR がある数の8乗であれば1+√2 + pRの位数は奇数である。
よって 方程式 x^8 - (1+√2) が R/pRで完全分解する素数pをとればよい。
そのような素数はチェボタレフ密度定理により無限にある。
160: 2018/11/10(土)06:33 ID:EuCYu9xA(6/6) AAS
かいたあとに気づく。orz。これも初等的にいける。けど、もういいや。これで。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s