[過去ログ] 面白い問題おしえて〜な 十五問目 (1001レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
488
(6): 2009/05/30(土)00:42 AAS
∠ABC=24°の菱形ABCDがあって、
線分BCのC側の延長上に点Eを、∠CDE=30°となるようにとるとき、
∠DAE=30°となることを証明してちょ。
553: 2009/06/01(月)14:08 AAS
一段落したところで、暇な人は>>488でも考えてくれ
577: 2009/06/02(火)00:50 AAS
>>488 は 中学範囲で解かないといかんのか?
三角関数もありなの?
610: 2009/06/02(火)17:06 AAS
>>488 は?
614
(2): 2009/06/02(火)18:43 AAS
スルーされっぱなしで、たまに(多分出題者から)推薦レスが来る>>488
そろそろ解いてみようか?

問題文転載

∠ABC=24°の菱形ABCDがあって、
線分BCのC側の延長上に点Eを、∠CDE=30°となるようにとるとき、
∠DAE=30°となることを証明してちょ。
641
(2): 2009/06/03(水)18:33 AAS
>>614
一応、>>488の解答例を。
> ∠ABC=24°の菱形ABCDがあって、
> 線分BCのC側の延長上に点Eを、∠CDE=30°となるようにとるとき、
> ∠DAE=30°となることを証明してちょ。

線分CE上に、∠FAC=24°となるように点Fをとり、
Fを通る直線ACと平行な直線と直線BAとの交点をGとする。
さらに、線分AFを1辺とする正三角形AFHを、AFからみてCと反対側に作り、
直線GHと直線BDの交点をXとする。

菱形の対称性より、∠ABD=∠DBC=∠CDB=∠BDA=12°、∠CAB=∠DAC=78°
省15
649
(1): 2009/06/04(木)14:26 AAS
>>488について考えたが途中でわからんくなった
ACとDEを延長した交点をFとする
更に、AFをF側に延長し、その上に点Oを、∠ADO=78度になるようにとる。三角形ADOは、AO=DO底角78度頂角24度の二等辺三角形になる
この二等辺三角形の底辺であるADの垂直二等分線をひき、半径OAの円との交点をXとすると、DXやXAを一辺とする正三十角形が書ける
これによって問題中の∠ADCや∠CDEが全部円周角になって、解ける、かと思ったが

AEを延長した直線が、AからD側に数えて6つ角を挟んだ先の正三十角形の頂点と交わることを示せるはずなんだが示せない、方針まずいのかなあ
OF=FAを使おうかと思ったがこれも使えないし・・・
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s