フェルマーの最終定理の証明 (965レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
945: 132人目の素数さん [] 09/29(月)22:06 ID:tsfKlyQm(1/8)
  r↑(θ,φ) = ( asinθcosφ, asinθsinφ, acosθ )
  ∂r↑/∂θ↑= ( acosθcosφ, acosθsinφ, -asinθ ).
  ∂r↑/∂φ↑= ( -asinθsinφ, asinθcosφ, 0 ).
  ∂r↑ ∂r↑
  ──×──
  ∂θ ∂φ
 = ( |acosθsinφ -asinθ| |-asinθ acosθcosφ| | acosθcosφ, acosθsinφ|
   |asinθcosφ   0  |, |  0  -asinθsinφ|, |-asinθsinφ, asinθcosφ | )
 = ( a^2sin^2θcosφ, a^2sin^2θsinφ, a^2cos^2φsinθcosθ+ a^2sin^2φsinθcosθ )
 = ( a^2sin^2θcosφ, a^2sin^2θsinφ, a^2sinθcosθ ).
  |∂r↑ ∂r↑| 
  |──×── | = √( a^4sin^4θcos^2φ + a^4sin^4θsin^2φ+ a^4sin^2θcos^2θ)
  |∂θ ∂φ | 
          = √( a^4sin^4θ + a^4sin^2θcos^2θ)
          = √( a^4sin^2θ(sin^θ + cos^2θ) )
          = √( a^4sin^2θ) = a^2sinθ.
  ∬_S 1 dS
     |∂r↑ ∂r↑|
 = ∬_D |──×── |dθdφ
     |∂θ ∂φ |
 = a^2∬[D] sinθdθdφ
 = a^2∫[0,2π]dφ∫[0,π]sinθdθ
 = 4πa^2
946: 132人目の素数さん [] 09/29(月)22:07 ID:tsfKlyQm(2/8)
  S = |∂r↑/∂t×∂r↑/∂z|dtdz
   =∫[0→3]∫[0→2π]2dtdz
   =∫[0→3][2t][0→2π]dz
   =∫[0→3]4πdz = 4π[z][0→3] = 12π.
  S = |∂r↑/∂t×∂r↑/∂z|dtda
   =∫[0→2]∫[0→2π]adtda
   =∫[0→2][at][0→2π]dz
   =∫[0→2]2πa]da = 2π[a^2/2][0→2] = 4π.
947: 132人目の素数さん [] 09/29(月)22:09 ID:tsfKlyQm(3/8)
  A↑= ( f(x,y,z), g(x,y,z), h(x,y,z) )
  ∫∫∫divA↑dV = ∬A↑・n↑dS ・・・・・・ (#1)
     V      S
           ┌   ┐┌ ┐
           │∂/∂x││f│
  divA↑= ∇・A↑ = │∂/∂y││g│= ∂f/∂x + ∂g/∂y + ∂h/∂z
           │∂/∂z││h│
           └   ┘└ ┘
 α、β、γ(方向余弦)
       ┌ ┐┌   ┐
       │f││cosα│
  A↑・n↑ = │g││cosβ│= fcosα + gcosβ + hcosγ
       │h││cosγ│
       └ ┘└   ┘
  ∫∫∫(∂f/∂x + ∂g/∂y + ∂h/∂z)dV = ∬(fcosα + gcosβ + hcosγ)dS ・・・・・・ (#2)
     V                  S
  ∫∫∫∂h/∂z dV = ∬hcosγdS
     V       S

  ∫∫∫∂h/∂z dV =∫∫∫∂h(x,y,z)/∂z dzdydx
    V         V
948: 132人目の素数さん [] 09/29(月)22:10 ID:tsfKlyQm(4/8)
  (sinz)^2 = (1-cos(2z))/2
  1/(sinz)^2 = 2/(1-cos(2z))
        = 2/{(2z)^2/2! - (2z)^4/4! + (2z)^6/6! - (2z)^8/8! + ・・・}
        = (1/z^2)[1/{1-(2z)^2/4! + (2z)^4/6! - (2z)^6/8! + ・・・ }]
  A = (2z)^2/4! - (2z)^4/6! + (2z)^6/8! - ・・・
  1/(sinz)^2 = (1/z^2)(1+A+A^2+A^3+・・・)
  1/z^2 + 1/12 - 11z^2/720 -・・・
  z/(e^z-1)
 = 1/(1+z/2! + z^2/3! + z^3/4! + ・・・
 = 1 -(z/2!+z^2/3!+z^3/4!+・・・) + (z/2!+z^2/3!+z^3/4!+・・・)^2 - (z/2!+z^2/3!+z^3/4!+・・・)^3 + ・・・
 = 1- z/2 + z^2/12 - z^4/720 + ・・・
949: 132人目の素数さん [] 09/29(月)22:12 ID:tsfKlyQm(5/8)
  tan z = sin z / cos z
 cos z の零点は、z = π/2 + mπ (m は整数)。
 tan z は z = π/2 + mπ で一位の極をもつ(tan z の特異点)。
  tan z = a/(z - α) + b + c(z - α) + ……
  (z - α)tan z = a + b(z - α) + ??……?
 α = π/2 + mπ では、z → α の極限を取り、
  (z - α)tan z = sin z / {cos z/(z - α)}
→ sin α / cos' α = sin α / (- sin α) = - 1
 z-pi/2=u とおくと、
  tan(z) = -cos(u)/sin(u)
      = (-1/u)*{1-u^2/2!+...}/{1-u^2/3!+...}
      = (-1/u)*{1+3u^2+...}.
  tan(z) = sin(z) / cos(z)
  sin(z) は C 上特異点なし。
  cos(z) の 零点 → tan(z) の特異点
  cos(z) の 零点 (1/2+n) π

  cos(z) = cos ( {z-(1/2+n)π} + (1/2+n)π )
      = cos (z-(1/2+n)π)cos (1/2+n)π - sin(z-(1/2+n)π)sin (1/2+n)π
      = (-1)^(n+1) sin (z-(1/2+n)π)
 よって、
  lim[z→(1/2+n)π](z-(1/2+n)π) / cos(z)
 = (-1)^(n+1) lim[z→(1/2+n)π](z-(1/2+n)π) / sin(z - (1/2+n)π)
  tan(z) = i{exp(2iz)-1}/{exp(2iz)+1}
  z = (1/2+n)π
  A = lim{z-(1/2+n)π}tan(z)
   = lim i{exp(2iz)-1}/[{exp(2iz)+1}/{z-(1/2+n)π}]
  A = 1
950: 132人目の素数さん [] 09/29(月)22:13 ID:tsfKlyQm(6/8)
∫[0→∞] (sin(x)/x)^2 dx
  ∫[0→∞] (sin(x)/x)^2 dx
 = ∫[0→∞] (1/x^2) sin(x)^2 dx
 = ∫[0→∞] (- 1/x)'sin(x)^2 dx
 = [(- 1/x) sin(x)^2][0→∞] - ∫[0→∞] (- 1/x) (sin(x)^2)'dx

  [(- 1/x) sin(x)^2][0→∞]
 = [- sin(x)^2/x][0→∞]
 = lim[x→∞](- sin(x)^2/x) - lim[x→0](- sin(x)^2/x)
 = lim[x→∞](- sin(x)^2/x) - lim[x→0](- (sin(x)/x)^2 x)
 = (- 0) - (- 1・0)
 = 0

  ∫[0→∞] (- 1/x) (sin(x)^2)'dx
 = ∫[0→∞] (- 1/x) 2 sin(x) cos(x) dx
 = ∫[0→∞] (- 1/x) sin(2x) dx
 = -∫[0→∞] sin(2x)/x dx
 = -∫[0→∞] (sin(2x)/(2x))・2 dx
 = -∫[0→∞] (sin(2x)/(2x)) (d (2x)/dx) dx
 2x = t
  ∫[0→∞] (- 1/x) (sin(x)^2)'dx
 = -∫[0→∞] (sin(t)/t) (dt/dx) dx
 = -∫[0→∞] (sin(t)/t) dt
 = -π/2

 ∫[0→∞] (sin(x)/x)^2 dx
= 0 - (- π/2)
= π/2
951: 132人目の素数さん [] 09/29(月)22:15 ID:tsfKlyQm(7/8)
I=∫[0→∞] sin2x cosx (1/x2)dx = (1/2)∫[0→∞] (sin2x sinx)(1/x2)dx
=(1/2){ [sin2x sinx(-1/x)][∞,0]
- ∫[0→∞] (2cos2x sinx + sin2x cosx) (-1/x)dx }
=(1/2)[ 0+∫[0→∞] (1/2){(sin3x-sinx) + (sin3x+sinx)}/x dx ]
=(1/4)∫[0→∞] (2sin3x)/x dx = (1/2)∫[0→∞] (sin3x)/(3x) d(3x)
=π/4・・・・・?
∫[0→∞] sin3x (1/x3)dx
=[sin3x (-1/2x2)][∞,0] - ∫[0→∞] 3sin2x cosx (-1/2x2)dx
  (sin3x)/x2=sinx(sinx/x)2 → 0・1=0 (x→0) )
 =-0+0+(3/2)∫[0→∞] (sin2x cosx)/x2 dx
 =(3/2)∫[0→∞] (sin2x cosx)/x2 dx
 = (3/2)I = 3π/8 (?から)
952: 132人目の素数さん [] 09/29(月)22:16 ID:tsfKlyQm(8/8)
 ?[0→∞]x^2/(x^2+1)^3dx$
 f(z) = z^2/(z^2+1)^3
    Res[f(z),i]
   = (1/2)lim_{z→i}{z^2/(z+i)^3}"
   = (1/2)lim_{z→i}[2{z/(z+i)^3}'-3{z^2/(z+i)^4}']
   = (1/2)lim_{z→i}[2{1/(z+i)^3-3z/(z+i)^4}-3{2z/(z+i)^4-4z^2/(z+i)^5}]
   = (1/2)lim_{z→i}[2/(z+i)^3-12z/(z+i)^4+12z^2/(z+i)^5]
   = lim_{z→i}[(z+i)^2-6z(z+i)+6z^2]/(z+i)^5
   = lim_{z→i}(z^2-4iz-1)/(z+i)^5
   = -i/16
  ∴∫_{C}f(z)dz
   = i2πRes[f(z),i]
   = π/8.
  ∫_{-R〜R}f(z)dz+∫_{Γ}f(z)dz = π/8
  lim_{R→∞}∫_{Γ}f(z)dz
 = lim_{R→∞}∫_{0〜π}[ie^(3it)/{Re^(2it)+1/R}^3]dt = 0

  ∴∫_{-∞〜∞}x^2/(x^2+1)^3dx = π/8.
  ∫_{0〜∞}x^2/(x^2+1)^3dx = π/16.
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.035s