フェルマーの最終定理の証明 (843レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
640: 132人目の素数さん [] 2025/08/17(日) 10:34:24.39 ID:ie59VeEu E(t)=Ri(t)+1/C ∫?i(t) dt i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t) E(t)=R dq(t)/dt+q(t)/C L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s) L[q(t)/C]=Q(s)/C L[E]=E/s E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C) Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR) 1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs s=0⇒A/CR=1 A=CR s=-1/CR⇒-B 1/CR=1 B=-CR Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR) L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) ) http://rio2016.5ch.net/test/read.cgi/math/1745314067/640
641: 132人目の素数さん [] 2025/08/17(日) 10:34:58.81 ID:ie59VeEu y^''+3y^'+2y=x (D^2+3D+2)y=x D^2+3D+2=(D+2)(D+1)=0 D=-2, D=-1 y_0=C_1 e^(-2x)+C_2 e^(-x) (D+2)(D+1) y_s=x となるようなy_s を求める。 y_s=1/(D+2)(D+1) x=1/((D+2) ) 1/((D+1) ) x =1/((D+2) ) 1/((D-(-1)) ) x=1/(D+2) e^(-x) 1/D e^x x =1/(D+2) e^(-x) ∫▒〖e^x x〗 dx=1/(D+2) e^(-x) (e^x x-∫▒e^x dx) (e^x )^'=e^x =1/(D+2) e^(-x) (xe^x-e^x )=1/(D+2) (x-1) =1/((D-(-2)) ) x-1/((D-(-2)) )=e^(-2x) 1/D e^2x x-e^(-2x) 1/D e^2x =e^(-2x) (∫▒〖(1/2 e^2x )^' x〗 dx)-e^(-2x) 1/2 e^2x =e^(-2x) (1/2 e^2x x-1/2 ∫▒e^2x dx)-1/2 =e^(-2x) (1/2 e^2x x-1/4 e^2x )-1/2=1/2 x-1/4-1/2=1/2 x-3/4 ∴y=C_1 e^(-2x)+C_2 e^(-x)+1/2 x-3/4 http://rio2016.5ch.net/test/read.cgi/math/1745314067/641
642: 132人目の素数さん [] 2025/08/17(日) 10:36:06.88 ID:ie59VeEu M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx? M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) ) =-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2 M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx =1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx =1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt (x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2 -∞<x?∞ ⇒-∞<t?∞ http://rio2016.5ch.net/test/read.cgi/math/1745314067/642
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.044s