フェルマーの最終定理の証明 (872レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
789: 132人目の素数さん [] 09/04(木)13:15 ID:bNaeXkef(1/2)
F(ω)=∫[-∞→∞]f(t)e^(-jωt)dt
f(t)= F^(-1) [F(ω)]=1/2π ∫[-∞→∞]F(ω) e^jωt ? dω
g(t)={(0(t<0):f(t)e^(-σt)t≧0)
G(ω)=∫[-∞→∞]g(t)e^(-jωt)dt
=∫[0→∞]g(t)e^(-jωt)dt
=∫[0→∞]f(t)e^(-σt)e^(-jωt)dt
=∫[0→∞]f(t)e^(-(σ+jω)t)dt
s=σ+jω
F(s)=∫[0→∞]f(t)e^(-st)dt
s=σ+jω ds=jdω ω: -∞ → ∞
s:σ-j∞→σ+j∞
g(t)=(1/2π)[-∞→∞]F(s)e^jωtdω
=(1/2πj)∫[σ-j∞→σ+j∞]F(s)e^jωtds
f(t)e^(-σt)=f(t)/e^σt
=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^jωtds
f(t)=(1/2πj)∫[σ-j∞→σ+j∞]F(s)e^σt e^jωtds
=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^(σ+jω)tds
f(t)=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^stds
790: 132人目の素数さん [] 09/04(木)13:15 ID:bNaeXkef(2/2)
k^2 -3k + 2 = (k-1)(k-2) = 0 k = 1, 2
なので
y''(t) - 3'y(t) + 2y(t) = 0
の一般解 y0 は
y0 = C1e^t + C2e^(2t)
?の特殊解をv(t)とすると
v(t) = 1/(D-1)(D-2)*e^(-t)
= 1/(D-2)*e^(-t) - 1/(D-1)*e^(-t)
= (-1/3)e^(-t) + (1/2)e^(-t) = (1/6)e^(-t)
よって?の一般解は
y(t) = C1e^t + C2e^(2t) + (1/6)e^(-t)
y(0) = C1 + C2 + 1/6 = 1/6
C1 + C2 = 0 …… ?
y'(t) = C1e^t + C2*2e^(2t) - (1/6)e^(-t)
y'(0) = C1 + C2*2 - 1/6 = 5/6
C1+ 2C2 = 1……?
??より
C1 = -1, C2= 1
初期値を満たす特殊解を改めて y とおくと
y(t) = -e^t +e^(2t) + (1/6)e^(-t)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.029s