フェルマーの最終定理の証明 (940レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
877: 132人目の素数さん [] 09/20(土)23:51 ID:C1Y9AdsW(1/3)
C:x=x(t),y=y(t)
OP↑=r(t)=(x(t),y(t))
OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt))
Δs=|Δr|=|Δr(t+Δt)-r(t)|
RΔθ≒Δs,1/R=Δθ/Δs
1/R=lim[Δt→0](Δθ/Δs)=dθ/ds
dr/dt=rDt
r Dt=(x Dt,y Dt)
r ?(t+Δt)=(x ?(t+Δt),y ?(t+Δt))
r Dt=r ?=(x ?,y ?)
r ?(t+Δt)= r ?_Q=(x ?_Q,y ?_Q)
Δr ? ?Δr ?_Q ΔsinΔθ=det(r ?,r ?_Q)
ΔθΔsinΔθ=(det(r ?,r ?_Q))/Δr ? ?Δr ?_Q ?
878: 132人目の素数さん [] 09/20(土)23:52 ID:C1Y9AdsW(2/3)
f(θ)=a_0/2+納k=1→∞](a_k cos(kθ)+b_k sin(kθ))
a_k=1/π ∫[-π→π]f(θ)cos(kθ)dθ)
b_k=1/π ∫[-π→π]f(θ)sin(kθ)dθ

e^jθ =cosθ+jsinθ
e^(-jθ)=cosθ-jsinθ
cosθ=(e^jθ+e^(-jθ))/2. sinθ=(e^jθ-e^(-jθ))/2j.
f(θ)=a_0/2+納k=1→∞](a_k (e^jkθ+e^(-jkθ))/2+b_k (e^jkθ-e^(-jkθ))/2j)
=a_0/2+納k=1→∞](a_k(e^jkθ+e^(-jkθ))/2+?jb?_k (e^(-jkθ)-e^jkθ)/2)
=a_0/2+納k=1→∞]((a_k-jb_k)/2 e^jkθ) +納k=1→∞]((a_k+jb_k)/2 e^(-jkθ) )
a_(-k)=(1/π)∫[-π→π]f(θ)cos(-kθ)dθ)
=(1/π)∫[-π→π]f(θ)cos(kθ)dθ)=a_k
b_(-k)=(1/π)∫[-π→π]f(θ)sin(-kθ)dθ
= -1/π ∫[-π→π]f(θ)sin(kθ)dθ= -b_k
f(θ)
=納k=1→∞]((a_k+jb_k)/2 e^(-jkθ) ) +a_0/2+納k=1→∞]((a_k-jb_k)/2 e^jkθ )
=(a_2+jb_2)/2 e^(-j2θ)+(a_1+jb_1)/2 e^(-j1θ)+a_0/2+(a_1-jb_1)/2 e^j1θ+(a_2-jb_2)/2e^j2θ+?
=(a_(-2)-jb_(-2))/2 e^j2θ+(a_(-1)-jb_(-1))/2 e^j1θ+a_0/2+(a_1-jb_1)/2 e^j1θ+(a_2-jb_2)/2 e^j2θ+?
=農(k=-∞)^∞?((a_k-jb_k)/2 e^jkθ )
c_k=(a_k-jb_k)/2
f(θ)=納k=-∞→∞]c_k e^jkθ
c_k=(a_k-jb_k)/2
=(1/2π)∫[-π→π]f(θ)cos(kθ)dθ-(j/2π)∫[-π→π]f(θ)sin(kθ)dθ
=(1/2π)∫[-π→π]f(θ)(cos(kθ)-jsin(kθ))dθ
=(1/2π)∫[-π→π]f(θ)(cos(-kθ)+jsin(-kθ))dθ
=(1/2π)∫[-π→π]f(θ)(cos(-kθ)+jsin(-kθ))dθ
=(1/2π)∫[-π→π]f(θ)e^(-jkθ)dθ
879: 132人目の素数さん [] 09/20(土)23:53 ID:C1Y9AdsW(3/3)
f^((k) ) (z)=(n!/2πi)?_Cf(ζ)/(ζ-z)^(k+1)dζ
?@)n=1のとき
f(z)=1/( 2πi) ?_Cf(ζ)/((ζ-z) ) dζ
f(z+h)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+Δz) ) dζ
f(z+h)-f(z)=1/( 2πi) ?_Cf(ζ)/(ζ-(z+h) )-f(ζ)/((ζ-z) ) dζ
=1/( 2πi) ?_Cf(ζ)((ζ-z)-(ζ-z-h))/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)(ζ-z-ζ+z+h)/(ζ-z-h)(ζ-z)dζ
=1/( 2πi) ?_Cf(ζ)h/(ζ-z-h)(ζ-z)dζ
=h/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
( f(z+h)-f(z))/h=1/( 2πi) ?_Cf(ζ)/(ζ-z-h)(ζ-z)dζ
 h→0
f'(z)= f^((1)) (z)=1/2πi ?_C(f(ζ))/(ζ-z)^2dζ
?A)n=k(k=1,2,3,…)のとき
f^((k)) (z)=k!/2πi ?_C(f(ζ))/(ζ-z)^(k+1)dζ ⇒f^((k+1)) (z)=(k+1)!/( 2πi) ?_Cf(ζ)/(ζ-z)^(k+2)dζ
f^((k)(z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_Cf(ζ)/(ζ-(z+h))^(k+1) -f(ζ)/(ζ-z)^(k+1)dζ
=k!/( 2πih) ?_C((ζ-z)^(k+1)-(ζ-z-h)^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ??※
(a+b)^(k+1)
=(_k+1^ )C_0 a^n b^0+(_k+1^ )C_1 a^(k+1-1) b^1+(_k+1^ )C_2 a^(k+1-2) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+?+b^(k+1)
=a^(k+1)+(k+1) a^k b+(_k+1^ )C_2 a^(k-1) b^2+?+(_k+1^ )C_r a^(k+1-r) b^r+? +b^(k+1)
(ζ-z-h)^(k+1)
=(ζ-z)^(k+1)-(k+1) (ζ-z)^k h + (_k+1^ )C_2 (ζ-z)^(k-1) h^2-?+h^(k+1)
(ζ-z)^(k+1)-(ζ-z-h)^(k+1)
=(k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1)
( f^((k) ) (z+h)- f^((k) ) (z))/h
=k!/( 2πih) ?_C((k+1) (ζ-z)^k h-(_k+1^ )C_2 (ζ-z)^(k-1) h^2+?-h^(k+1))/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
=(k+1)!/( 2πi) ?_Cf(ζ)/((ζ-z-h)^(k+1) (ζ-z) ) dζ-k!/( 2πi) ?_C((_k+1^ )C_2 (ζ-z)^(k-1) h-?+h^k)/((ζ-z-h)^(k+1) (ζ-z)^(k+1) ) f(ζ)dζ
 h→0
f^((k+1)) (z)
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.036s