フェルマーの最終定理の証明 (956レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
202: 与作 [] 2025/06/14(土) 19:39:54.96 ID:b7Hd/XxU (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 (2)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(3)とおく。 (3)は(y-1)=k3のとき、(y^2+y+1)=(x^2+x)/kとならない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/202
250: 与作 [] 2025/06/23(月) 23:22:17.96 ID:YG/65mHI n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。 (2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。 よって、(y-1)(y^2+y+1)=k3(x^2+x)/kは成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/250
314: 与作 [] 2025/07/04(金) 15:26:23.96 ID:kpNFIDiH >311 k=1 y=4 21≠(x^2+x) http://rio2016.5ch.net/test/read.cgi/math/1745314067/314
553: 与作 [] 2025/08/01(金) 19:45:26.96 ID:SvqlOkUt nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)が成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/553
615: 132人目の素数さん [] 2025/08/08(金) 11:51:41.96 ID:K5nrmcJ7 |∫_a^b?f(x)sin(αx)dx| =|?_(k=1)^n??∫_(x_k)^(x_(k+1))?f(x) sin(αx)dx?| =|∫_(x_1)^(x_2)?f(x) sin(αx)dx+∫_(x_2)^(x_3)?f(x) sin(αx)dx+?+∫_(x_n)^(x_(n+1))?f(x) sin(αx)dx| ?|∫_(x_1)^(x_2)?f(x) sin(αx)dx|+|∫_(x_2)^(x_3)?f(x) sin(αx)dx|+?+|∫_(x_n)^(x_(n+1))?f(x) sin(αx)dx| =?_(k=1)^n?|∫_(x_k)^(x_(k+1))?f(x) sin(αx)dx| =?_(k=1)^n?|(∫_(x_k)^(x_(k+1))?f(x) -f(x_k )+f(x_k ))sin(αx)dx| ??_(k=1)^n?(|∫_(x_k)^(x_(k+1))?( f(x)-f(x_k ) )sin(αx) dx|+|f(x_k ) ∫_(x_k)^(x_(k+1))?sin(αx) dx|) ??_(k=1)^n?(∫_(x_k)^(x_(k+1))?|f(x)-f(x_k )||sin(αx)| dx+|f(x_k )||∫_(x_k)^(x_(k+1))?sin(αx) dx|) ??_(k=1)^n?(∫_(x_k)^(x_(k+1))?|f(x)-f(x_k )|1 dx+M∫_(x_k)^(x_(k+1))?|sin(αx)| dx) ∫_(x_k)^(x_(k+1))?|sin(αx)| dx=|[(-1)/α cos(αx)]_(x_k)^(x_(k+1) ) |=1/α |cos(x_(k+1) )- cos(x_k )| ?1/α (|cos(x_(k+1) )|+|cos(x_k )|)?2/α http://rio2016.5ch.net/test/read.cgi/math/1745314067/615
773: 132人目の素数さん [] 2025/08/31(日) 19:39:09.96 ID:Bq8GdLuV y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix ) ∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1) y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1) =(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) ) =- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x) y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x) =C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x) =(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x) =Acos(x)+Bsin(x)+1/2cos(x) y_s=1/2cos(x) y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x) =C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x) =C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x) =C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x) =(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x) =Acos(x)+Bsin(x)+1/2cos(x) http://rio2016.5ch.net/test/read.cgi/math/1745314067/773
953: 与作 [] 2025/09/30(火) 11:35:55.96 ID:zCyYE19J ab=kcd/kが成立つならば、 a=kcのとき、b=d/kとなる。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/953
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s