フェルマーの最終定理の証明 (856レス)
フェルマーの最終定理の証明 http://rio2016.5ch.net/test/read.cgi/math/1745314067/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
38: 与作 [] 2025/04/28(月) 15:10:12.78 ID:AmGsv3a0 (1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。 (y-1)=nのとき、y=n+1 (y-1)(y^(n-1)+…+y+1)≠n(x^(n-1)+…+x)左辺は奇数、右辺偶数となる。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/38
59: 与作 [] 2025/05/02(金) 21:16:17.78 ID:/yGtjdu9 n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=k2x/k…(2)とおく。 (2)は(y-1)=2のとき、成立つので、(y-1)=k2でも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/59
144: 与作 [] 2025/05/29(木) 11:17:09.78 ID:RIlYCM+P >143 わかりません。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/144
195: 与作 [] 2025/06/11(水) 20:00:06.78 ID:1Ym80dTS nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)≠(x^(n-1)+…+x)となる。 (2)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(3)とおく。 (3)は(y-1)=knのとき、(y^(n-1)+…+y+1)≠(x^(n-1)+…+x)/kとなる。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/195
276: 与作 [] 2025/07/02(水) 12:10:56.78 ID:oZn35gPk ※同じ数は、同じ形に因数分解できる。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/276
340: 与作 [] 2025/07/12(土) 21:43:47.78 ID:s3WFIjrV nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。 (2)が成立つかは、kの値に依らない。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/340
352: 与作 [] 2025/07/14(月) 22:09:34.78 ID:nqT/+2Xo n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=k2x/k…(2)とおく。 (2)は(y-1)=k2のとき、(y+1)=x/kとなる。 (2)の成否は、kの有無に依らない。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/352
381: 132人目の素数さん [] 2025/07/17(木) 15:23:04.78 ID:88t231TB G(f)=∫_(-∞)^∞??g(t) e^(-j2πft) ? dt g(t)=∫_(-∞)^∞??G(f) e^j2πft ? df のときは ∫_(-∞)^∞?? |g(t)|^2 ? dt=∫_(-∞)^∞?? |G(f)|^2 ? dω G(f)=∫_(-∞)^∞??g(t) e^(-j2πft) ? dt の両辺の共役複素数をとると (G(f) ) ?=∫_(-∞)^∞??(g(t) ) ?e^(-j2πft) ? dt であるが、g(t)が実数ならば ( G(f) ) ?=∫_(-∞)^∞??g(t) e^(-j2πft) ? dt= G(f) http://rio2016.5ch.net/test/read.cgi/math/1745314067/381
441: 与作 [] 2025/07/21(月) 14:46:05.78 ID:MDkdyceh n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数) (1)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(2)とおく。 (2)はk=1のとき、(y-1)=3、(y^2+y+1)=(x^2+x)とならない。 (2)はk=1のとき、成立たないので、k=1以外でも成立たない。 ∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/441
572: 与作 [] 2025/08/03(日) 06:12:58.78 ID:bBhDGorO 三乗根は空間であり、とは、 どういう意味でしょうか? http://rio2016.5ch.net/test/read.cgi/math/1745314067/572
603: 132人目の素数さん [] 2025/08/07(木) 11:23:08.78 ID:jDc0ZGtb ∫_0^∞?(sin(x))/x dx ∂/∂s (e^(-sx) (sin(x))/x)=-xe^(-sx) (sin(x))/x=-e^(-sx) sin(x) F(s)=∫_0^∞??e^(-sx) (sin(x))/x? dx (s?0) dF(s)/ds=d/ds ∫_0^∞??e^(-sx) sin?(x)/x? dx =∫_0^∞??∂/ds e^(-sx) sin?(x)/x? dx =∫_0^∞??-xe^(-sx) sin?(x)/x? dx=-∫_0^∞??e^(-sx) sin?(x) ? dx =-∫_0^∞??-1/s (e^(-sx) )^' sin(x)? dx =∫_0^∞??1/s (e^(-sx) )^' sin(x)? dx =[1/s e^(-sx) sin(x)]_0^∞-1/s ∫_0^∞??e^(-sx) cos(x)? dx =0-1/s ∫_0^∞??e^(-sx) cos(x)? dx=-1/s ∫_0^∞???-1/s (e^(-sx) )?^' cos(x)? dx =1/s^2 ∫_0^∞??(e^(-sx) )^' cos(x)? dx =[1/s^2 e^(-sx) cos(x)]_0^∞-1/s^2 ∫_0^∞??-e^(-sx) sin(x)? dx =-1/s^2 +1/s^2 ∫_0^∞??e^(-sx) sin(x)? dx =-1/s^2 -1/s^2 dF(s)/ds (dF(s)/ds=-∫_0^∞??e^(-sx) sin?(x) ? dx) http://rio2016.5ch.net/test/read.cgi/math/1745314067/603
680: 与作 [] 2025/08/20(水) 14:08:21.78 ID:X9kJ+Syw nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数) (1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。 (2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。 (2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。 ∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/680
705: 132人目の素数さん [] 2025/08/22(金) 21:48:04.78 ID:aTp7UHTZ M(θ)=E[e^θX ]=∫_(-∞)^∞??e^θx f(x)dx? M(θ)=E[e^θX ]=1/(√2π σ) ∫_(-∞)^∞??e^θx e^(-(x-μ)^2/(2σ^2 )) ? dx=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx θx-(x-μ)^2/(2σ^2 )=1/(2σ^2 ) (2σ^2 θx-(x-μ)^2 )=-1/(2σ^2 ) (? (x-μ)?^2-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2+μ^2-2μx-2σ^2 θx ) =-1/(2σ^2 ) (? x?^2-2(μ+σ^2 θ)x+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ+σ^2 θ)^2+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(μ^2+2μσ^2 θ+σ^4 θ^2 )+μ^2 ) =-1/(2σ^2 ) ((x-(μ+σ^2 θ))^2-(2μσ^2 θ+σ^4 θ^2 ) ) =-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2 M(θ)=1/(√2π σ) ∫_(-∞)^∞?e^(θx-(x-μ)^2/(2σ^2 )) dx =1/(√2π σ) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )+μθ+(σ^2 θ^2)/2) ) dx =1/(√2π σ) e^(μθ+(σ^2 θ^2)/2) ∫_(-∞)^∞?e^((-(x-(μ+σ^2 θ))^2/(2σ^2 )) ) dx t=(x-(μ+σ^2 θ))/(√2 σ) x=√2 σt+μ+σ^2 θ dx=√2 σdt (x-(μ+σ^2 θ))^2/(2σ^2 )=((x-(μ+σ^2 θ))/(√2 σ))^2=t^2 -∞<x?∞ ⇒-∞<t?∞ http://rio2016.5ch.net/test/read.cgi/math/1745314067/705
759: 132人目の素数さん [] 2025/08/30(土) 20:37:27.78 ID:GT1KZtG+ C:x=x(t),y=y(t) OP↑=r(t)=(x(t),y(t)) OQ↑ ?=r(t+Δt)=(x(t+Δt),y(t+Δt)) Δs=|Δr|=|Δr(t+Δt)-r(t)| RΔθ≒Δs,1/R=Δθ/Δs 1/R=lim[Δt→0](Δθ/Δs)=dθ/ds dr/dt=rDt r Dt=(x Dt,y Dt) r ?(t+Δt)=(x ?(t+Δt),y ?(t+Δt)) r Dt=r ?=(x ?,y ?) r ?(t+Δt)= r ?_Q=(x ?_Q,y ?_Q) Δr ? ?Δr ?_Q ΔsinΔθ=det(r ?,r ?_Q) ΔθΔsinΔθ=(det(r ?,r ?_Q))/Δr ? ?Δr ?_Q ? http://rio2016.5ch.net/test/read.cgi/math/1745314067/759
766: 与作 [] 2025/08/31(日) 13:03:18.78 ID:UWxBdGA7 n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数) (1)を(y-1)(y+1)=2x…(2)とおく。 (2)は(y-1)=2のとき、(y+1)=xとなる。 (2)は成立つので、(y-1)(y+1)=k2x/kも成立つ。 ∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。 http://rio2016.5ch.net/test/read.cgi/math/1745314067/766
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.102s