フェルマーの最終定理の証明 (879レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
93: 与作 [] 05/11(日)21:59:57.62 ID:oo5sE4jG(4/4)
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。
(2)はk=1のとき、(y-1)=n、(y^(n-1)+…+y+1)≠(x^(n-1)+…+x)となる
(2)はk=1のとき、成立たないので、k=1以外のときも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
323: 与作 [] 07/10(木)14:45:51.62 ID:lTsI7iXz(1/2)
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。
(2)はk=1のとき成立たないので、k=1以外でも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
410: 与作 [] 07/18(金)16:34:22.62 ID:CPsIms6C(8/11)
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=1のとき、(y-1)=2、(y+1)=xとなる。
(2)がk=1のとき、成立つならば、k=1以外でも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
451: 与作 [] 07/22(火)10:51:05.62 ID:4RVzbR/O(4/10)
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(2)とおく。
(2)はk=1のとき、(y-1)=3、(y^2+y+1)=(x^2+x)とならない。
(2)はk=1のとき、成立たないので、k=1以外でも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
551: 与作 [] 08/01(金)19:43:46.62 ID:SvqlOkUt(1/6)
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)が成立つので、(y-1)(y+1)=k2x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
654: 132人目の素数さん [] 08/19(火)06:06:22.62 ID:UNSSr5hH(3/12)
(D^2+1)y=1/(?cos?^3 (x) )
(D^2+1)y=0
λ^2+1=0 λ=0±i
y_0=e^(-0) (C_1 cos(x)+C_2 sin(x))=C_1 cos(x)+C_2 sin(x)
cos(x)=((e^ix+e^(-ix))/2)
1/(cos^3(x))=(2/(e^ix+e^(-ix) ))^3=8/(e^ix+e^(-ix) )^3
(D^2+1) y_s=8/(e^ix+e^(-ix) )^3
(D+i)(D-i) y_s=8/(e^ix+e^(-ix) )^3
y_s=(1/(D+i))(1/(D-i)) 8/(e^ix+e^(-ix) )^3
1/(D-i) 8/(e^ix+e^(-ix) )^3 =8e^ix 1/D e^(-ix) 1/(e^ix+e^(-ix) )^3
=8e^ix ∫e^(-ix)/(e^ix+e^(-ix) )^3 dx
e^(-ix)/(e^ix+e^(-ix) )^3 =(e^3ix e^(-ix))/(e^3ix (e^ix+e^(-ix) )^3 )=e^2ix/((e^ix )^3 (e^ix+e^(-ix) )^3 )
=e^2ix/(e^ix (e^ix+e^(-ix) ))^3 =e^2ix/(e^2ix+1)^3
∴1/(D-i) 8/(e^ix+e^(-ix) )^3 =8e^ix ∫e^(-2ix)/(e^2ix+1)^3 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫(8e^2ix)/(e^2ix+1)^3 dx=∫(8e^2ix)/t^3 dt/(2ie^2ix )=∫4/t^3 dt/i
=-∫4i/t^3 dt=-4i∫t^(-3) dt =-4i ?-t?^(-2)/2=2it^(-2)
=2i/(e^2ix+1)^2
663: 132人目の素数さん [] 08/19(火)19:49:22.62 ID:UNSSr5hH(9/12)
E(t)=Ri(t)+1/C ∫?i(t) dt
i(t)=dq(t)/dt ∫?dq(t)/dt dt=q(t)
E(t)=R dq(t)/dt+q(t)/C
L[Rq^' ]=RsQ(s)-Rq(0)=RsQ(s)
L[q(t)/C]=Q(s)/C L[E]=E/s
E/s=RsQ(s)+Q(s)/C=Q(s)(Rs+1/C)
Q(s)= E/s 1/(Rs+1/C)=E/s(Rs+1/C) =(E/R)/s(s+1/CR) =E/R 1/s(s+1/CR)
1/s(s+1/CR) =A/s+B/(s+1/CR) 1=A(s+1/CR)+Bs
s=0⇒A/CR=1 A=CR
s=-1/CR⇒-B 1/CR=1 B=-CR
Q(s)=E/R (A/s+B/(s+1/CR))=E/R (CR/s-CR/(s+1/CR))=CE/s-CE/(s+1/CR)
L^(-1) [CE/s-CE/(s+1/CR)]=CE(L^(-1) [1/s-1/(s+1/CR)])=CE(1-e^(-1/CR t) )
720: 与作 [] 08/26(火)22:09:38.62 ID:bcf4ZxI8(2/3)
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
761: 132人目の素数さん [] 08/30(土)20:37:57.62 ID:GT1KZtG+(5/7)
y''+y=sin(2x)
λ^2+1=0 λ=0±i
y_0=C_1 cos(x)+C_2 sin(x)
y_1=cos(x), y_2=sin(x)
?y_1?^'=-sin(x), ?y_2?^'=cos(x)
W=|?( cos(x)@-sin(x) )?( sin(x) @ cos(x) )|
=?cos?^2 (x)+?sin?^2 (x)=1
y_s (x)=-y_1 ∫?(y_2 R(x))/W dx+y_2 ∫?(y_1 R(x))/W dx
=-cos(x) ∫?sin(x)sin(2x) dx+sin(x) ∫?cos(x)sin(2x) dx
∫?sin(2x)sin(x) dx=-1/2 ∫??cos(2x+x)-cos(2x-x) ? dx
=-1/2 ∫??cos(3x)-cos(x) ? dx=-1/2?1/3 sin(3x)+1/2 sin(x)
=-1/6 sin(3x)+1/2 sin(x)
∫?sin(2x)cos(x) dx=1/2 ∫??sin(2x+x)+sin(2x-x) ? dx
=1/2 ∫??sin(3x)+sin(x) ? dx=1/2?(-1)/3 cos(3x)+(-1)/2 cos(x)
=-1/6 cos(3x)-1/2 cos(x)
y_s (x)
=-cos(x)(-1/6 sin(3x)+1/2 sin(x))+sin(x)(-1/6 cos(3x)-1/2 cos(x))
=1/6 sin(3x)cos(x)-1/2 sin(x)cos(x)-1/6 cos(3x)sin(x)-1/2 sin(x)cos(x)
=1/6 sin(3x-x)-sin(x)cos(x)=1/6 sin(2x)-1/2 sin(2x)
=-1/3 sin(2x)
∴y=C_1 cos(x)+C_2 sin(x)-1/3 sin(2x)
872: 132人目の素数さん [] 09/19(金)04:39:36.62 ID:LR/DMPMr(1)
口頭で説明できないと証明したことにならないかんな
カンペ読んだら無効
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.034s