フェルマーの最終定理の証明 (843レス)
前次1-
抽出解除 レス栞

69: 与作 [] 05/03(土)10:08:35.61 ID:z7QJ+P6f(8/13)
3*4=k3*4/k…(1)
(1)はk=1のとき、成立つので、k=1以外でも成立つ。
k=1、3*4=3*4
k=2、3*4=6*2
k=3、3*4=9*(4/3)
k=4、3*4=12*1
k=5、3*4=15*(4/5)
88: 与作 [] 05/10(土)19:36:05.61 ID:Ea4u4dx4(4/5)
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。
(2)はk=1のとき、(y-1)=n、(y^(n-1)+…+y+1)≠(x^(n-1)+…+x)となる
(2)はk=1のとき、成立たないので、k=1以外のときも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
176: 与作 [] 06/05(木)16:16:07.61 ID:I0SxGtrH(3/4)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=1のとき、y=3、x=4で成り立つ。
188: 与作 [] 06/07(土)19:43:27.61 ID:2GASwNQI(9/10)
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xは成立つ。
(2)を(y-1)(y+1)=k2x/k…(3)とおく。
(3)は(y-1)=k2のとき、(y+1)=x/kも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
220: 与作 [] 06/15(日)18:32:29.61 ID:d9lM3H4v(6/7)
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
よって、(2)は(y-1)(y+1)=k2x/kとなる。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
238
(1): 132人目の素数さん [] 06/22(日)16:47:58.61 ID:Wy5kg38B(1)
2^m + 3^n = x^2 を満たす自然数 m、n、x を求める。

 フェルマーの最終定理に詳しいようなのでこれくらいは朝飯前と思います。
 困っているので、ぜひ教えてください。
 お願いします。
245: 与作 [] 06/22(日)21:33:07.61 ID:hhhU/jcg(8/8)
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/k…(2)とおく。
(2)は(y-1)=knのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)/kとならない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
272: 与作 [] 07/02(水)11:50:07.61 ID:oZn35gPk(2/29)
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、2*4=2xとなる。
(2)の両辺は同じ形に因数分解できる。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
378: 与作 [] 07/17(木)13:21:34.61 ID:4J9At0pY(12/17)
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=1のとき、(y-1)=2、(y+1)=xとなる。
(2)がk=1のとき、成立つならば、k=1以外でも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
466: 与作 [] 07/23(水)13:42:39.61 ID:TwiO87mj(1/9)
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=1のとき、(y-1)=2、(y+1)=xとなる。
(2)はk=1のとき、成立つので、k=1以外でも成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
662: 与作 [] 08/19(火)10:39:20.61 ID:0I4aqNXf(3/6)
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
(2)は成立たないので、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kも成立たない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.040s