フェルマーの最終定理の証明 (850レス)
前次1-
抽出解除 レス栞

9: 与作 [] 04/23(水)17:13:08.07 ID:167XbawO(7/16)
ご苦労様です
160: 与作 [] 06/01(日)16:10:29.07 ID:4FJiQSBY(3/5)
(1)を(y-1)(y+1)=k2x/k…(2)とおく。
(2)はk=2のとき、y=5、x=12で成り立つ。
271: 与作 [] 07/02(水)09:17:06.07 ID:oZn35gPk(1/29)
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、(y^(n-1)+…+y+1)=(x^(n-1)+…+x)とならない。
よって、(y-1)(y^(n-1)+…+y+1)=kn(x^(n-1)+…+x)/kとならない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
292: 与作 [] 07/02(水)19:23:06.07 ID:oZn35gPk(22/29)
※同じ数は、同じ形に因数分解できる。

n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、2*4=2*xとなる。
(2)の両辺は同じ形に因数分解できる。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
454: 132人目の素数さん [] 07/22(火)12:30:40.07 ID:UfTdyzFE(2/7)
∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)
t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α)
x:0→1 t:α→β
x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α)
∫_0^1?x^m (1-x)^n dx
=∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt
=1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)!
∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)

m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx
=-1/6 (β-α)^3
m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx
=-1/12 (β-α)^4
m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx
=(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5
462: 132人目の素数さん [] 07/22(火)20:09:15.07 ID:UfTdyzFE(5/7)
L[y^'' (t)]=s^2 Y(s)-sy(0)-y^' (0) =s^2 Y(s)-2s-4
L[?4y?^' (t)]=4(sY(s)-y(0))=4sY(s)-8
L[4y(t)]=4Y(s)
L[y^'' (t)]-L[?4y?^' (t)]+ L[4y(t)]
=s^2 Y(s)-2s-4-4sY(s)+8+4Y(s)
=Y(s)(s^2-4s+4)-2s+4
L[6te^2t ]=6L[t^1 e^2t ]=6 1!/(s-2)^2 =6/(s-2)^2 ( L[t^n e^at ]=n!/(s-a)^(n+1) )
Y(s)(s^2-4s+4)-2s+4=6/(s-2)^2
Y(s) (s-2)^2-2s+4=6/(s-2)^2
Y(s) (s-2)^2=6/(s-2)^2 +2(s-2)
Y(s)=6/(s-2)^4 +2/(s-2)
Y(s)= F(s-2)とおくと
F(s-2)=6/(s-2)^4 +2/(s-2)
∴F(s)=6/s^4 +2/s=3!/s^(3+1) +2/s
y(t)=L^(-1)[F(s-2)]=e^2t L^(-1) [F(s)] ( L^(-1) [F(s-a)]=e^at L^(-1) [F(s)])
=e^2t L^(-1) [3!/s^(3+1) +2/s] (L[t^n ]=n!/s^(n+1) )
=e^2t (t^3+2)
514: 132人目の素数さん [] 07/27(日)20:18:14.07 ID:PdhNF7gV(5/8)
(x+1)^2020=(x+1)^(2?1010)=(x^2+2x+1)^1010 =((x^2+1)+2x)^1010
((x^2+1)+2x)^1010
=(x^2+1)^1010+1010(x^2+1)^1009 2x+(_1010^ )C_2 (x^2+1)^1008 (2x)^2+
?+1010(x^2+1) (2x)^1009+(2x)^1010
(2x)^1010以外の項はx^2+1の倍数なのでpを適当な整数とすると
((x^2+1)+2x)^1010=p(x^2+1)+(2x)^1010……?

(2x)^1010=(4x^2 )^505=((4x^2+4)-4)^505
((4x^2+4)-4)^505
=(4x^2+4)^505+505(4x^2+4)^504 (-4)+(_505^ )C_2 (4x^2+4)^1008 (-4)^2+
?+505(4x^2+4) (-4)^1009+(-4)^1010
(-4)^1010以外の項は4x^2+4の倍数なのでqを適当な整数とすると
((4x^2+4)-4)^505=q(4x^2+4)+(-4)^1010
=4q(x^2+1)+(-2)^505 2^505
=4q(x^2+1)-2^1010……?
??より
(x+1)^2020=p(x^2+1)+(2x)^1010
=p(x^2+1)+4q(x^2+1)-2^1010
=(x^2+1)(p+4q)-2^1010
547: 132人目の素数さん [] 08/01(金)17:04:10.07 ID:2hip4JpQ(2/8)
Q? √(6&2^(2x^2+15)/x^(4x+30) ) (x=√2n, n?5) ・・・・・(#12)
x=e^logx 2=e^log2
2^(2x^2+15) = ?(e^log2)?^(2x^2+15)=e^((2x^2+15)log2)
x^(4x+30)=?(e^logx)?^(4x+30)=e^((4x+30)logx)
 ここで
(2x^2+15)log2 >(4x+30)logx (x?12) ・・・・・(#14)
2^(2x^2+15)/x^(4x+30) =e^((2x^2+15)log2)/e^((4x+30)logx) =e^((2x^2+15)log2-(4x+30)logx)>e^0
√(6&2^(2x^2+15)/x^(4x+30) )>√(e^0 )=1
x=√2n?12 、つまりn?72
のとき(#15)は成り立つ。
37?n?71⇒n?73?2n
19?n?36⇒n?37?2n
10?n?18⇒n?19?2n
6?n?9⇒n?11?2n
n=4,5⇒n?7?2n
n=3⇒3?6?6
n=2⇒2?3?4
n=1⇒1?2?2
554: 132人目の素数さん [] 08/01(金)21:29:42.07 ID:2hip4JpQ(6/8)
∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)
t=(β-α)x+α dt=(β-α)dx dx=dt/(β-α)
x:0→1 t:α→β
x=(t-α)/(β-α) 1-x=(β-α-(t-α))/(β-α)=(β-t)/(β-α)
∫_0^1?x^m (1-x)^n dx
=∫_α^β??((t-α)/(β-α))^m ((β-t)/(β-α))^n ? dt/(β-α)=∫_α^β?((t-α)^m (β-t)^m)/(β-α)^(m+n+1) dt
=1/(β-α)^(m+n+1) ∫_α^β??(t-α)^m (β-t)^m ? dt=m!n!/(m+n+1)!
∴∫_α^β??(x-α)^m (β-x)^n ? dx=m!n!/(m+n+1)! (β-α)^(m+n+1)

m=1,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β?(x-α)(β-x) dx
=-1/6 (β-α)^3
m=2,n=1⇒∫_α^β?(x-α)(x-β) dx=-∫_α^β??(x-α)^2 (β-x) ? dx
=-1/12 (β-α)^4
m=2,n=2⇒∫_α^β??(x-α)^2 (x-β)^2 ? dx=∫_α^β??(x-α)^2 (β-x)^2 ? dx
=(2?2)/(5?4?3?2?1) (β-α)^5=1/30 (β-α)^5
716: 132人目の素数さん [] 08/24(日)07:39:32.07 ID:2032YQkT(1/2)
et(r ?,r ?_Q)=|■(x ?&(x_q ) ?@y ?&(y_q ) ? )|=x ?(y_q ) ?-(x_q ) ?(y=) ?x ?(y_q ) ?-x ?y ?+x ?y ?-(x_q ) ?y ?
=x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt)
Δr ? ?Δr ?_Q ?=√(x ?^2+y ?^2 ) √((x_q ) ?^2+(y_q ) ?^2 )
=√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 ).
 したがって
Δθ/Δs=(x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt))/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) 1/Δr(t+Δt)-r(t)?
=((x ?(y ?(t+Δt)-y Dt)-y ?(x ?(t+Δt)-x Dt))/Δt)/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) ΔtΔr(t+Δt)-r(t)?^(-1)
=(x ? ((y ?(t+Δt)-y Dt))/Δt-y ? ((x ?(t+Δt)-x Dt))/Δt)/(√(x ?^2+y ?^2 ) √(?(x ?(t+Δt))?^2+?(y ?(t+Δt))?^2 )) ?(r(t+Δt)-r(t))/Δt?^(-1)

1/R=(lim)┬(Δt→0)??Δθ/Δs?=(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 )) ? Δr ? ??^(-1)
=(x ?y ?-yx ?)/(√(x ?^2+y ?^2 ) √(x ?^2+y ?^2 ) √(x ?^2+y ?^2 ))
=(x ?y ?-yx ?)/(x ?^2+y ?^2 )^(3/2)

R=(x ?^2+y ?^2 )^(3/2)/(x ?y ?-yx ? )
787: 132人目の素数さん [] 09/03(水)08:20:31.07 ID:cpr6IQHh(4/5)
y_s=1/(D+i) (2i/(e^2ix+1)^2 )=e^(-ix) 1/D e^ix 2i/(e^2ix+1)^2 =e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx
t=e^2ix+1 dt=2ie^2ix dx dx=dt/(2ie^2ix )
∫?(2ie^2ix)/(e^2ix+1)^2 dx?=∫?(2ie^2ix)/t^2 dt/(2ie^2ix )?=∫t^(-2) dt=-1/t=-1/(e^2ix+1)
y_s=e^(-ix) ∫(2ie^2ix)/(e^2ix+1)^2 dx=-e^(-ix)/(e^2ix+1)
=(- e^(-ix) (e^(-ix)+e^ix-e^ix ))/(e^(-ix) (e^2ix+1) ) =(- e^(-ix) (e^(-ix)+e^ix )+1)/(e^ix+e^(-ix) )
=- e^(-ix)+1/(e^ix+e^(-ix) )=- e^(-ix)+1/2cos(x)

y=C_1 cos(x)+C_2 sin(x)- e^(-ix)+1/2cos(x)
=C_1 cos(x)+C_2 sin(x)- cos(x)+isin(x)+1/2cos(x)
=(C_1-1)cos(x)+(C_2+i)sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
y_s=1/2cos(x)
y=C_2 cos(x)+C_1 sin(x)- 1/2 cos(2x) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- 1/2 (2?cos?^2 (x)-1) 1/cos(x)
=C_2 cos(x)+C_1 sin(x)- (?cos?^2 (x)-1/2)/cos(x)
=C_2 cos(x)+C_1 sin(x)- cos(x)+1/2 1/cos(x)
=(C_2-1)cos(x)+C_1 sin(x)+1/2cos(x)
=Acos(x)+Bsin(x)+1/2cos(x)
826: 132人目の素数さん [] 09/12(金)08:29:15.07 ID:hW3FzIQW(1/3)
F(ω)=∫[-∞→∞]f(t)e^(-jωt)dt
f(t)= F^(-1) [F(ω)]=1/2π ∫[-∞→∞]F(ω) e^jωt ? dω
g(t)={(0(t<0):f(t)e^(-σt)t≧0)
G(ω)=∫[-∞→∞]g(t)e^(-jωt)dt
=∫[0→∞]g(t)e^(-jωt)dt
=∫[0→∞]f(t)e^(-σt)e^(-jωt)dt
=∫[0→∞]f(t)e^(-(σ+jω)t)dt
s=σ+jω
F(s)=∫[0→∞]f(t)e^(-st)dt
s=σ+jω  ds=jdω  ω: -∞ → ∞
s:σ-j∞→σ+j∞
g(t)=(1/2π)[-∞→∞]F(s)e^jωtdω
=(1/2πj)∫[σ-j∞→σ+j∞]F(s)e^jωtds
f(t)e^(-σt)=f(t)/e^σt
=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^jωtds
f(t)=(1/2πj)∫[σ-j∞→σ+j∞]F(s)e^σt e^jωtds
=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^(σ+jω)tds
f(t)=(1/2πj)∫[σ-j∞→σ+j∞]F(s) e^stds
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.594s*