フェルマーの最終定理の証明 (876レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
87: 与作 [] 05/10(土)16:24:00.06 ID:Ea4u4dx4(3/5)
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=k3(x^2+x)/k…(2)とおく。
(2)はk=1のとき、(y-1)=3、(4^2+4+1)≠(x^2+x)となる。
(2)はk=1のとき、成立たないので、k=1以外のときも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
131: 与作 [] 05/23(金)08:28:51.06 ID:y1H5CyP9(1/2)
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xが成立つ。
(2)を(y-1)(y+1)=k2x/k…(3)とおく。
(3)はk/k=1なので、(y-1)=k2のとき、(y+1)=x/kが成立つ。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
193: 与作 [] 06/11(水)15:31:19.06 ID:1Ym80dTS(1/3)
n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
X^2+Y^2=Z^2をy^2=(x+1)^2-x^2…(1)とおく。(y,xは有理数)
(1)を(y-1)(y+1)=2x…(2)とおく。
(2)は(y-1)=2のとき、(y+1)=xとなる。
(2)を(y-1)(y+1)=k2x/k…(3)とおく。
(3)は(y-1)=k2のとき、(y+1)=x/kとなる。
∴n=2のとき、X^n+Y^n=Z^nは自然数解を無数に持つ。
274: 与作 [] 07/02(水)12:00:36.06 ID:oZn35gPk(4/29)
nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^n+Y^n=Z^nをy^n=(x+1)^n-x^n…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^(n-1)+…+y+1)=n(x^(n-1)+…+x)…(2)とおく。
(2)は(y-1)=nのとき、n*{(n+1)^(n-1)+…+(n+1)+1}≠n*(x^(n-1)+…+x)となる。
(2)の両辺は同じ形に因数分解できない。
∴nが奇素数のとき、X^n+Y^n=Z^nは自然数解を持たない。
418: 132人目の素数さん [] 07/19(土)07:26:34.06 ID:IuvwCE17(3/3)
(?A)μ=0のとき重解なので
X= C_1 e^0x+C_2 xe^0x=C_1+C_2 x
境界条件 u_x (0,t)=u_x (1,t)=0より
X^' (0)=X^' (1)= C_2=0
X=C_1
X= C_1+C_2 x
(?B)
λ^2-μ=0 λ=0±i√(-μ)
X^''+ω^2 X=0
λ^2+ω^2=0 λ=0±iω
X=e^0x (C_1 cos?(ωx)+C_2 sin?(ωx) )
=C_1 cos(ωx)+C_2 sin(ωx)
X^'=-C_1 ω sin?(ωx)+C_2 ω cos?(ωx)
境界条件 u_x (0,t)=u_x (1,t)=0より
X^' (0)= C_2 ω=0
X^' (1)=-C_1 ω sin?(ω)+C_2 ω cos?(ω)=-C_1 ω sin?(ω)=0
C_1≠0 ∴C_1 ω≠0 (ω>0)
sin?(ω)=0 ∴ω=kπ (k=1,2,3,?)
728: 132人目の素数さん [] 08/27(水)14:42:08.06 ID:SaRzx/tC(4/5)
f(z)=1/(1-z) z=i で展開
?@) |z-i|<√2
(1-i)(1-(z-i)/(1-i))=1-i+(1-i) (z-i)/(1-i)
1/(1-z)=1/(1-i-(z-i) )=1/(1-i)?1/(1-(z-i)/(1-i))
=1/(1-i) (1+((z-i)/(1-i))+((z-i)/(1-i))^2+((z-i)/(1-i))^3+?)
=(z-i)^0/(1-i)+(z-i)^1/(1-i)^2 +(z-i)^2/(1-i)^3 +?
=((1+i) (z-i)^0)/2+((1+i)^2 (z-i)^1)/2^2 +((1+i)^3 (z-i)^2)/2^3 +?
=納n=0→∞]((1+i)/2)^(n+1) (z-i)^n
※(1 )/(1-i)^2 =(1/(1-i))(1/(1-i))=(1+i)/((1-i)(1+i))((1+i)/(1-i)(1+i)) =(1+i)^2/2^2
?A) |z-i|>√2の場合
|z-i|/√2=|(z-i)/(1-i)|>1
すなわち、0<|(1-i)/(z-i)|<1となるから((1-i)/(z-i))^n の級数展開を考える。
1/(1-z)=1/(1-i-(z-i) )=-1/(z-i)?1/(1-(1-i)/(z-i))
=-1/(z-i) (1+((1-i)/(z-i))+((1-i)/(z-i))^2+((1-i)/(z-i))^3+?)
=-(1/(z-i)+(1-i)/(z-i)^2 +(1-i)^2/(z-i)^3 +?)
=-(1/(z-i)+2/(1+i)(z-i)^2 +2^2/?(1+i)^2 (z-i)?^3 +?)
=-((2^0 (z-i)^(-1))/(1+i)^0 +(2^1 (z-i)^(-2))/(1+i)^1 +(2^2 (z-i)^(-3))/(1+i)^2 +?)
=-(?(1+i)^0 (z-i)?^(-1)/2^0 +?(1+i)^(-1) (z-i)?^(-2)/2^(-1) +((1+i)^(-2) (z-i)^(-3))/2^(-2) +?)
=-納n=1→∞]((1+i)/2)^(1-n) (z-i)^(-n)
※(1-i)^2=(1-i)(1-i)=(1-i)(1+i)/(1+i)?(1-i)(1+i)/(1+i)=2^2/(1+i)^2
(1-i)^n=2^n/(1+i)^n
752: 与作 [] 08/30(土)09:43:27.06 ID:IcDbQgDC(2/6)
n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
X^3+Y^3=Z^3をy^3=(x+1)^3-x^3…(1)とおく。(y,xは有理数)
(1)を(y-1)(y^2+y+1)=3(x^2+x)…(2)とおく。
(2)は(y-1)=3のとき、(y^2+y+1)=(x^2+x)とならない。
(2)は成立たないので、(y-1)(y^2+y+1)=k3(x^2+x)/kも成立たない。
∴n=3のとき、X^n+Y^n=Z^nは自然数解を持たない。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.035s