[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ13 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
973: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 02/15(土)17:37 ID:XknlDm4+(8/10)
>>972 タイポ訂正と補足
<タイポ訂正>(他にも文字化けなどあると思うが 原文PDFご参照)
(AC2) Ωを空でない集合族とする.もし鵬Ωであれば,写像f:Ω→UΩ
↓
(AC2) Ωを空でない集合族とする.もしΦ not∈ Ωであれば,写像f:Ω→UΩ
<補足>(3(Zornの補題) ⇒ 1(選択公理)のステートメントを押えておこう;p)
https://alg-d.com/math/ac/wo_z.html
順序集合Xが「任意の部分全順序集合は上界を持つ」を満たすならば,Xの極大元が存在する.(Zornの補題)
https://alg-d.com/math/ac/
alg-d 壱大整域
選択公理と同値な命題とその証明
https://alg-d.com/math/ac/ac.html
選択公理について
2019年09月17日更新
定義
Xを集合とするとき,次の条件を満たす写像 f: X\{∅} → ∪x∈X x を集合 X の選択関数という.
任意の非空集合 x∈X に対して f(x)∈x
次の命題を選択公理と呼ぶ.
選択公理 任意の集合は選択関数を持つ.
定義
全射 g: Λ→A をΛを添え字集合とする集合族という.Xλ := g(λ) と置いて,この集合族を{X_λ}_{λ∈Λ}で表すことが多い.
また,次の条件を満たす写像f: Λ→∪_{λ∈Λ}X_λを集合族{X_λ}_{λ∈Λ}の選択関数という.
任意のλ∈Λに対して f(λ)∈Xλ
集合族{X_λ}_{λ∈Λ}の選択関数全体からなる集合をΠ_{λ∈Λ}X_λで表す.f∈Π_{λ∈Λ}X_λに対して xλ := f(λ) と置くとき,f = ( xλ )λ∈Λ 等と表すことがある.
上下前次1-新書関写板覧索設栞歴
あと 29 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.017s