リーマン面 (648レス)
リーマン面 http://rio2016.5ch.net/test/read.cgi/math/1700727225/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
83: 132人目の素数さん [] 2024/01/24(水) 11:55:42.27 ID:ZkPFgyVs Let $O_G$ denote the set of Riemann surfaces which do not have Green functions. By generalizing Evans' theorem, it was proved by by Z. Kuramochi [K-1,2,3] that $R\in O_G$ if and only if $R$ admits an Evans potential, which Kuramochi calls Evans-Selberg potential in view of a work of H. Selberg [Sb] as well as [E]\footnote{[Sb] appeared a little later than [E].}. As a background of Kuramochi's work, one can mention [Nv] which initiated complex analysis on open Riemann surfaces by establishing that, given a plane domain $D$, $D\in O_G$ if and only if the Bergman kernel of $D$ is trivial. M. Ohtsuka [Oht] proved that $D\in O_G$ if and only if $D$ admits a nonconstant bounded superharmonic function. \begin{definition}If $R\notin O_G$, a divergent sequence of point $p_n$ in $R$ is called \textbf{irregular} if there exists $p'\in R$ such that $\liminf_{n\to\infty}{g(p_n,p')}>0$. \end{definition} Extensions of Picard's theorem have been obtained in order to describe the essential singularities of meromorphic functions near the sets of null logarithmic capacity (cf. [Km]). http://rio2016.5ch.net/test/read.cgi/math/1700727225/83
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s