リーマン面 (643レス)
上下前次1-新
抽出解除 レス栞
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
6: 132人目の素数さん [] 2023/11/28(火)06:54:01.62 ID:ABxOPJme(1)
古すぎる
56: 132人目の素数さん [] 2024/01/09(火)10:14:23.62 ID:mBZCubyo(2/3)
BDをノルム$$\|f\|=\sup{|f|}+D[f]$$により完備化してできるBanach環\footnote{これを[S-N]では\textbf{Royden環}と呼んでいる。}は単位元を持ち可換であるので、Gelfand理論により、その極大イデアル全体のなすコンパクトな空間$R^*$上の$\mathbb{C}$値連続関数全体のなすBanach環の部分環である。$R$の点を付値写像とみなすことにより$R$は$R^*$の稠密な開集合と同一視できる\footnote{この$R^*\setminus R$を$R$の\textbf{Royden境界}という。}。$R^*\setminus R$の元で$K$を含むもの全体を$\Delta$と書く\footnote{この$\Delta$を[S-N]では\textbf{調和境界}(harmonic boundary)と呼んでいる。}。するとDirichlet問題の解は次のように定式化される。\\
$\Delta$上の任意の連続関数$f$に対し、$R^*$上の連続関数$u$で$\Delta$上で$f$に一致し$R$上で調和なものがただ一つ存在する。\\
77: 132人目の素数さん [] 2024/01/11(木)21:02:39.62 ID:GWyUET7U(9/9)
MokはStanford大で学位を取った直後
モンゴルに招かれ
生まれて初めて馬に乗ったそうだ
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.030s